Loading…

Morsellised sawbones is an acceptable experimental substitute for the in vitro elastic and viscoelastic mechanical characterisation of morsellised cancellous bone undergoing impaction grafting

Abstract Impaction grafting using morsellised bone chips is widely used during surgery to mitigate the effects of bone loss. The technique typically involves the packing of morsellised allograft cancellous bone into bone defects, and has found extensive application in revision hip and knee surgery....

Full description

Saved in:
Bibliographic Details
Published in:Medical engineering & physics 2014-01, Vol.36 (1), p.26-31
Main Authors: Ayers, M.P, Clift, S.E, Gheduzzi, S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Impaction grafting using morsellised bone chips is widely used during surgery to mitigate the effects of bone loss. The technique typically involves the packing of morsellised allograft cancellous bone into bone defects, and has found extensive application in revision hip and knee surgery. In the ideal situation, the presence of the bone graft prevents subsidence of the revised prosthesis in the short term, and integrates with the host bone in the longer term. However, the configuration of particles within the graft remains to be optimised, and is highly likely to vary across potential sites and loading conditions. Human bone, for use in experimental investigation, is often difficult to obtain with properties that are relevant from a clinical point of view. This study, therefore, has explored the mechanical response of a Sawbones based experimental substitute. An established confined compression technique was used to characterise the morsellised Sawbones material. Comparison of the results with published values for bovine and human bone indicate that the mechanical response of the morsellised Sawbones material map well onto the elastic and viscoelastic response of bone of a biological origin.
ISSN:1350-4533
1873-4030
DOI:10.1016/j.medengphy.2013.08.005