Loading…

Over-expression of methionine sulfoxide reductase A in the endoplasmic reticulum increases resistance to oxidative and ER stresses

MsrA and MsrB catalyze the reduction of methionine-S- suifoxide and methionine-R-sulfoxide, respectively, to methionine in different cellular compartments of mammalian cells. One of the three MsrBs, MsrB3, is an endoplasmic reticulum (ER)-type enzyme critical for stress resistance including oxidativ...

Full description

Saved in:
Bibliographic Details
Published in:Acta biochimica et biophysica Sinica 2014-05, Vol.46 (5), p.415-419
Main Authors: Kim, Jung-Yeon, Kim, Yongjoon, Kwak, Geun-Hee, Oh, Su Young, Kim, Hwa-Young
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:MsrA and MsrB catalyze the reduction of methionine-S- suifoxide and methionine-R-sulfoxide, respectively, to methionine in different cellular compartments of mammalian cells. One of the three MsrBs, MsrB3, is an endoplasmic reticulum (ER)-type enzyme critical for stress resistance including oxidative and ER stresses. However, there is no evidence for the presence of an ER-type MsrA or the ER local- ization of MsrA. In this work, we developed an ER-targeted recombinant MsrA construct and investigated the potential effects of methionine-S-sulfoxide reduction in the ER on stress resistance. The ER-targeted MsrA construct contained the N-terminal ER-targeting signal peptide of human MsrB3A (MSPRRSLPRPLSLCLSLCLCLCLAAALGSAQ) and the C-terminal ER-retention signal sequence (KAEL). The over-expression of ER-targeted MsrA significantly increased cellular resistance to H202-induced oxidative stress. The ER-targeted MsrA over-expression also significantly enhanced resistance to dithiothreitol-induced ER stress; however, it had no positive effects on the resistance to ER stresses induced by tunicamycin and thapsigargin. Collectively, our data suggest that methionine-S-sulfoxide reduction in the ER compartment plays a protective role against oxidative and ER stresses.
ISSN:1672-9145
1745-7270
DOI:10.1093/abbs/gmu011