Loading…

Performance of a semi-pilot tubular microbial electrolysis cell (MEC) under several hydraulic retention times and applied voltages

•A tubular MEC meets legal requirements for COD removal (domestic wastewater).•HRTs below 4h required the use of a second MEC module acting as a polishing step.•Net energy consumption was in a range between 0.2 and 0.9Whg-COD−1. The influence of applied voltage and hydraulic retention time on the pe...

Full description

Saved in:
Bibliographic Details
Published in:Bioresource technology 2013-10, Vol.146, p.63-69
Main Authors: Gil-Carrera, L., Escapa, A., Carracedo, B., Morán, A., Gómez, X.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:•A tubular MEC meets legal requirements for COD removal (domestic wastewater).•HRTs below 4h required the use of a second MEC module acting as a polishing step.•Net energy consumption was in a range between 0.2 and 0.9Whg-COD−1. The influence of applied voltage and hydraulic retention time on the performance of a semi-pilot modular tubular wastewater-fed microbial electrolysis cell (MEC) with high scalability was investigated. A chemical oxygen demand (COD) removal efficiency of 80%, as well as an energy consumption of 0.3–1.1Whg-COD−1 removed, were achieved. Hydrogen production was limited by the reduced amounts of organic matter fed into the reactor, the poor performance of the cathode, and COD consuming by non electrogenic microorganisms. The presence of COD consuming microorganism that do not contribute to electrogenic metabolism severely affected the MEC performance.
ISSN:0960-8524
1873-2976
DOI:10.1016/j.biortech.2013.07.020