Loading…

Microbial diversity and dynamics during the production of May bryndza cheese

Diversity and dynamics of microbial cultures were studied during the production of May bryndza cheese, a traditional Slovak cheese produced from unpasteurized ewes' milk. Quantitative culture-based data were obtained for lactobacilli, lactococci, total mesophilic aerobic counts, coliforms, E. c...

Full description

Saved in:
Bibliographic Details
Published in:International journal of food microbiology 2014-01, Vol.170, p.38-43
Main Authors: Pangallo, Domenico, Šaková, Nikoleta, Koreňová, Janka, Puškárová, Andrea, Kraková, Lucia, Valík, Lubomír, Kuchta, Tomáš
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Diversity and dynamics of microbial cultures were studied during the production of May bryndza cheese, a traditional Slovak cheese produced from unpasteurized ewes' milk. Quantitative culture-based data were obtained for lactobacilli, lactococci, total mesophilic aerobic counts, coliforms, E. coli, staphylococci, coagulase-positive staphylococci, yeasts, fungi and Geotrichum spp. in ewes' milk, curd produced from it and ripened for 0 – 10days, and in bryndza cheese produced from the curd, in three consecutive batches. Diversity of prokaryotes and eukaryotes in selected stages of the production was studied by non-culture approach based on amplification of 16S rDNA and internal transcribed spacer region, coupled to denaturing gradient gel electrophoresis and sequencing. The culture-based data demonstrated an overall trend of growth of the microbial population contributing to lactic acid production and to ripening of the cheese, lactobacilli, lactococci and Geotrichum spp. growing up to densities of 108CFU/g, 109CFU/g and 105CFU/g, respectively, in all three consecutive batches of bryndza cheese. The diversity of bacteria encompassed Acinetobacter calcoaceticus, Acinetobacter guillouiae, Acinetobacter sp., Acinetobacter johnsonii, Citrobacter braakii, Clostridium bartlettii, Corynebacterium callunae, Corynebacterium maris, Enterobacter aerogenes, Enterobacter asburiae, Enterobacter hormaechei, Enterococcus faecium, Enterococcus pallens, Escherichia coli, Haemophilus haemolyticus, Hafnia alvei, Kluyvera cryocrescens, Lactobacillus helveticus, Lactococcus garvieae, Lc. lactis subsp. cremoris, Lc. lactis subsp. lactis, “Leuconostoc garlicum”, Mannheimia glucosida, Mannheimia haemolytica, Pseudomonas sp., Ps. fluorescens, “Ps. reactans”, Raoultella ornithinolytica, R. terrigena, “Rothia arfidiae”, Staphylococcus aureus, Staph. epidermidis, Staph. felis, Staph. pasteuri, Staph. sciuri, Staph. xylosus, Streptococcus parauberis, Str. thermophilus and Variovorax paradoxus. The diversity of yeasts and fungi encompassed Alternaria alternata, “Ascomycete sp.”, Aspergillus fumigatus, Beauveria brongniartii, Candida xylopsoci, C. inconspicua, Cladosporium cladosporioides, Debaromyces hansenii, Fomes fomentarius, Galactomyces candidus, Gymnoascus reesii, Chaetomium globosum, Kluyveromyces marxianus, Metarhizium anisopliae, Penicillium aurantiogriseum, P. camemberti, P. freii, P. polonicum, P. viridicatum, Pichia kudriavzevii, Sordaria alcina, Trichosporon lactis and Yarrow
ISSN:0168-1605
1879-3460
DOI:10.1016/j.ijfoodmicro.2013.10.015