Loading…
Near-Optimal Separators in String Graphs
Let G be a string graph (an intersection graph of continuous arcs in the plane) with m edges. Fox and Pach proved that G has a separator consisting of $O(m^{3/4}\sqrt{\log m})$ vertices, and they conjectured that the bound of $O(\sqrt m)$ actually holds. We obtain separators with $O(\sqrt m \,\log m...
Saved in:
Published in: | Combinatorics, probability & computing probability & computing, 2014-01, Vol.23 (1), p.135-139 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let G be a string graph (an intersection graph of continuous arcs in the plane) with m edges. Fox and Pach proved that G has a separator consisting of $O(m^{3/4}\sqrt{\log m})$ vertices, and they conjectured that the bound of $O(\sqrt m)$ actually holds. We obtain separators with $O(\sqrt m \,\log m)$ vertices. |
---|---|
ISSN: | 0963-5483 1469-2163 |
DOI: | 10.1017/S0963548313000400 |