Loading…
The excision theorems in Hochschild and cyclic homologies
We study the excision property for Hochschild and cyclic homologies in the category of simplicial algebras. We extend Wodzicki's notion of H-unital algebras to simplicial algebras and then show that a simplicial algebra I* satisfies excision in Hochschild and cyclic homologies if and only if it...
Saved in:
Published in: | Proceedings of the Royal Society of Edinburgh. Section A. Mathematics 2014-04, Vol.144 (2), p.305-317 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study the excision property for Hochschild and cyclic homologies in the category of simplicial algebras. We extend Wodzicki's notion of H-unital algebras to simplicial algebras and then show that a simplicial algebra I* satisfies excision in Hochschild and cyclic homologies if and only if it is H-unital. We use this result in the category of crossed modules of algebras and provide an answer to the question posed in the recent paper by Donadze et al. We also give (based on work by Guccione and Guccione) the excision theorem in Hochschild homology with coefficients. |
---|---|
ISSN: | 0308-2105 1473-7124 |
DOI: | 10.1017/S0308210512001874 |