Loading…

A novel constitutive model for semiconductors: The case of silicon

The photovoltaic industry relies heavily on solar-grade silicon multicrystals. Understanding their mechanical behavior requires the development of adequate constitutive models accounting for the effects of both high dislocation densities and complex loading situations in a wide range of temperature,...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the mechanics and physics of solids 2013-12, Vol.61 (12), p.2402-2432
Main Authors: Cochard, J., Yonenaga, I., M'Hamdi, M., Zhang, Z.L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The photovoltaic industry relies heavily on solar-grade silicon multicrystals. Understanding their mechanical behavior requires the development of adequate constitutive models accounting for the effects of both high dislocation densities and complex loading situations in a wide range of temperature, strain rate, and impurity contents. The traditional model of Alexander and Haasen poses several limitations. We introduce in this work a novel constitutive model for covalent single crystals and its implementation into a rate-dependent crystal plasticity framework. It is entirely physically based on the dislocation generation, storage and annihilation processes taking place during plastic flow. The total dislocation density is segmented according to the dislocation mobility potential and their character. A dislocation multiplication law for the yield region more accurate than the one of Alexander and Haasen is proposed. The influence of additional dislocation sources created on forest trees, usually disregarded in models for semiconductors, is assessed. The dislocation velocity law combines three potentially rate-limiting mechanisms: the standard double kink mechanism, jog dragging and the influence of localized obstacles. The model is valid at finite strains, in multiple slip conditions and captures accurately the high temperature- and strain rate sensitivity of semiconductors. The experimental stress overshoot is qualitatively reproduced only when jog dragging is accounted for. Localized obstacles are shown not to have any significant effect on dislocation motion in silicon. The broader case of extrinsic semiconductors is discussed and the influence of dissolved oxygen on the upper yield stress of silicon monocrystals is successfully reproduced.
ISSN:0022-5096
DOI:10.1016/j.jmps.2013.07.010