Loading…
Triblock polymer mediated synthesis of Ir―Sn oxide electrocatalysts for oxygen evolution reaction
Over the past several decades, tremendous effort has been put into developing cost-effective, highly active and durable electrocatalysts for oxygen evolution reaction (OER) in the proton exchange membrane water electrolyzer. This report explores an advanced and effective "soft" material-as...
Saved in:
Published in: | Journal of power sources 2014-03, Vol.249, p.175-184 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Over the past several decades, tremendous effort has been put into developing cost-effective, highly active and durable electrocatalysts for oxygen evolution reaction (OER) in the proton exchange membrane water electrolyzer. This report explores an advanced and effective "soft" material-assistant method to fabricate Ir0.6Sn0.4O2 electrocatalysts with a 0.6/0.4 ratio of Ir/Sn in precursors. Adopting a series of characterization methods, the collective results suggest that the surfactant-material F127 content, as an important factor, can efficiently control the formation of Ir-Sn oxides with varying surface properties and morphologies, such as the grainy and rod-shaped structures. Associating with the half-cell and single electrolyzer, it is affirmed that the optimal ratio of (Ir + Sn)/F127 is 100 for the preparation of S100-Ir0.6Sn0.4O2 with obviously enhanced activity and sufficient durability under the electrolysis circumstances. The lowest cell voltages obtained at 80 degree C are 1.631 V at 1000 mA cm-2, and 1.820 V at 2000 mA cm-2, when applying S100-Ir0.6Sn0.4O2 OER catalyst and Ti-material diffusion layer on the anode side and Nafion registered 115 membrane. Furthermore, the noble-metal Ir loading in the same cell decreases to 0.77 mg cm-2. These results highlight that Ir-Sn oxide synthesized by the soft-material method is a promising OER electrocatalyst. |
---|---|
ISSN: | 0378-7753 1873-2755 |
DOI: | 10.1016/j.jpowsour.2013.10.088 |