Loading…
Accumulation of loading damage and unloading reperfusion injury — Modeling of the propagation of deep tissue ulcers
Abstract Deep tissue injury (DTI) occurs in deep muscles around bony prominences due to excessive and prolonged mechanical loading acting on the skin surface. The condition is clinically challenging because it can escape being noticed till the damage propagates all the way to the skin. In this study...
Saved in:
Published in: | Journal of biomechanics 2014-05, Vol.47 (7), p.1658-1664 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract Deep tissue injury (DTI) occurs in deep muscles around bony prominences due to excessive and prolonged mechanical loading acting on the skin surface. The condition is clinically challenging because it can escape being noticed till the damage propagates all the way to the skin. In this study, a semi-3D finite element model of a human buttock was used to simulate the process of ulcer evolution based on our recent damage accumulation and repair theory for DTI. The theory included not only the loading damage, but also further reperfusion and inflammatory injuries upon unloading. The results showed that depending on the model parameters and loading conditions, a deep tissue ulcer may initiate around a bony prominence and expand to affect the entire tissue thickness. The damage evolution can be affected by the tissue healing rate, the loading–unloading pattern and the cushion stiffness. The results may help clinical workers appreciate the importance of proper patient turning and the appropriate choice of cushion. |
---|---|
ISSN: | 0021-9290 1873-2380 |
DOI: | 10.1016/j.jbiomech.2014.02.036 |