Loading…
Weak Galerkin finite element methods for Parabolic equations
A newly developed weak Galerkin method is proposed to solve parabolic equations. This method allows the usage of totally discontinuous functions in approximation space and preserves the energy conservation law. Both continuous and discontinuous time weak Galerkin finite element schemes are developed...
Saved in:
Published in: | Numerical methods for partial differential equations 2013-11, Vol.29 (6), p.2004-2024 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A newly developed weak Galerkin method is proposed to solve parabolic equations. This method allows the usage of totally discontinuous functions in approximation space and preserves the energy conservation law. Both continuous and discontinuous time weak Galerkin finite element schemes are developed and analyzed. Optimal‐order error estimates in both H1 and L2 norms are established. Numerical tests are performed and reported. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013 |
---|---|
ISSN: | 0749-159X 1098-2426 |
DOI: | 10.1002/num.21786 |