Loading…
Primal-dual active set methods for Allen-Cahn variational inequalities with nonlocal constraints
We propose and analyze a primal‐dual active set method for discretized versions of the local and nonlocal Allen–Cahn variational inequalities. An existence result for the nonlocal variational inequality is shown in a formulation involving Lagrange multipliers for local and nonlocal constraints. Loca...
Saved in:
Published in: | Numerical methods for partial differential equations 2013-05, Vol.29 (3), p.999-1030 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We propose and analyze a primal‐dual active set method for discretized versions of the local and nonlocal Allen–Cahn variational inequalities. An existence result for the nonlocal variational inequality is shown in a formulation involving Lagrange multipliers for local and nonlocal constraints. Local convergence of the discrete method is shown by interpreting the approach as a semismooth Newton method. Properties of the method are discussed and several numerical simulations demonstrate its efficiency. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013 |
---|---|
ISSN: | 0749-159X 1098-2426 |
DOI: | 10.1002/num.21742 |