Loading…

ATP-Responsive Controlled Release System Using Aptamer-Functionalized Mesoporous Silica Nanoparticles

Adenosine-5′-triphosphate (ATP) is a multifunctional nucleotide, which plays a vital role in many biological processes, including muscle contraction, cells functioning, synthesis and degradation of important cellular compounds, and membrane transport. Thus, the development of ATP-responsive controll...

Full description

Saved in:
Bibliographic Details
Published in:Langmuir 2012-09, Vol.28 (35), p.12909-12915
Main Authors: He, Xiaoxiao, Zhao, Yingxiang, He, Dinggeng, Wang, Kemin, Xu, Fengzhou, Tang, Jinlu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Adenosine-5′-triphosphate (ATP) is a multifunctional nucleotide, which plays a vital role in many biological processes, including muscle contraction, cells functioning, synthesis and degradation of important cellular compounds, and membrane transport. Thus, the development of ATP-responsive controlled release system for bioorganism application is very significative. Here, an original and facile ATP-responsive controlled release system consisting of mesoporous silica nanoparticles (MSN) functionalized with an aptamer as cap has been designed. In this system, the ATP aptamer was first hybridized with arm single-stranded DNA1 (arm ssDNA1) and arm single-stranded DNA2 (arm ssDNA2) to form the sandwich-type DNA structure and then grafted onto the MSN surface through click chemistry approach, resulting in blockage of pores and inhibition of guest molecules release. In the presence of ATP, the ATP aptamer combined with ATP and got away from the pore, leaving the arm ssDNA1 and ssDNA2 on the surface of MSN. The guest molecules can be released because single-stranded DNA is flexible. The release of the guest molecules from this system then can be triggered by the addition of ATP. As a proof-of-principle, Ru(bipy)3 2+ was selected as the guest molecules, and the ATP-responsive loading and release of Ru(bipy)3 2+ have been investigated. The results demonstrate that the system had excellent loading efficiency (215.0 μmol g–1 SiO2) and the dye release percentage can reach 83.2% after treatment with 20 mM ATP for 7 h. Moreover, the ATP-responsive behavior shows high selectivity with ATP analogues. However, the leakage of Ru(bipy)3 2+ molecule is neglectable if ATP was not added, indicating an excellent capping efficiency. Interestingly, this system can respond not only to the commercial ATP but also to the ATP extracted from living cells. By the way, this system is also relatively stable in mouse serum solution at 37 °C. This proof of concept might promote the application of ATP-responsive devices and can also provide an idea to design various target-responsive systems using other aptamers as cap.
ISSN:0743-7463
1520-5827
DOI:10.1021/la302767b