Loading…

Time-delay neural networks for time series prediction: an application to the monthly wholesale price of oilseeds in India

Agricultural price forecasting is one of the challenging areas of time series forecasting. The feed-forward time-delay neural network (TDNN) is one of the promising and potential methods for time series prediction. However, empirical evaluations of TDNN with autoregressive integrated moving average...

Full description

Saved in:
Bibliographic Details
Published in:Neural computing & applications 2014-03, Vol.24 (3-4), p.563-571
Main Authors: Jha, Girish K., Sinha, Kanchan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Agricultural price forecasting is one of the challenging areas of time series forecasting. The feed-forward time-delay neural network (TDNN) is one of the promising and potential methods for time series prediction. However, empirical evaluations of TDNN with autoregressive integrated moving average (ARIMA) model often yield mixed results in terms of the superiority in forecasting performance. In this paper, the price forecasting capabilities of TDNN model, which can model nonlinear relationship, are compared with ARIMA model using monthly wholesale price series of oilseed crops traded in different markets in India. Most earlier studies of forecast accuracy for TDNN versus ARIMA do not consider pretesting for nonlinearity. This study shows that the nonlinearity test of price series provides reliable guide to post-sample forecast accuracy for neural network model. The TDNN model in general provides better forecast accuracy in terms of conventional root mean square error values as compared to ARIMA model for nonlinear patterns. The study also reveals that the neural network models have clear advantage over linear models for predicting the direction of monthly price change for different series. Such direction of change forecasts is particularly important in economics for capturing the business cycle movements relating to the turning points.
ISSN:0941-0643
1433-3058
DOI:10.1007/s00521-012-1264-z