Loading…
A Robust Algorithm for Segmenting and Tracking Clustered Cells in Time-Lapse Fluorescent Microscopy
We present herein a robust algorithm for cell tracking in a sequence of time-lapse 2-D fluorescent microscopy images. Tracking is performed automatically via a multiphase active contours algorithm adapted to the segmentation of clustered nuclei with obscure boundaries. An ellipse fitting method is a...
Saved in:
Published in: | IEEE journal of biomedical and health informatics 2013-07, Vol.17 (4), p.862-869 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present herein a robust algorithm for cell tracking in a sequence of time-lapse 2-D fluorescent microscopy images. Tracking is performed automatically via a multiphase active contours algorithm adapted to the segmentation of clustered nuclei with obscure boundaries. An ellipse fitting method is applied to avoid problems typically associated with clustered, overlapping, or dying cells, and to obtain more accurate segmentation and tracking results. We provide quantitative validation of results obtained with this new algorithm by comparing them to the results obtained from the established CellProfiler, MTrack2 (plugin for Fiji), and LSetCellTracker software. |
---|---|
ISSN: | 2168-2194 2168-2208 |
DOI: | 10.1109/JBHI.2013.2262233 |