Loading…
Effect of Lignin Chemistry on the Enzymatic Hydrolysis of Woody Biomass
The impact of lignin‐derived inhibition on enzymatic hydrolysis is investigated by using lignins isolated from untreated woods and pretreated wood pulps. A new method, biomass reconstruction, for which isolated lignins are precipitated onto bleached pulps to mimic lignocellulosic biomass, is introdu...
Saved in:
Published in: | ChemSusChem 2014-07, Vol.7 (7), p.1942-1950 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The impact of lignin‐derived inhibition on enzymatic hydrolysis is investigated by using lignins isolated from untreated woods and pretreated wood pulps. A new method, biomass reconstruction, for which isolated lignins are precipitated onto bleached pulps to mimic lignocellulosic biomass, is introduced, for the first time, to decouple the lignin distribution issue from lignin chemistry. Isolated lignins are physically mixed and reconstructed with bleached pulps. Lignins obtained from pretreated woods adsorb two to six times more cellulase than lignins obtained from untreated woods. The higher adsorption of enzymes on lignin correlates with decreased carbohydrate conversion in enzymatic hydrolysis. In addition, the reconstructed softwood substrate has a lower carbohydrate conversion than the reconstructed hardwood substrate. The degree of condensation of lignin increases significantly after pretreatment, especially with softwood lignins. In this study, the degree of condensation of lignin (0.02 to 0.64) and total OH groups in lignin (1.7 to 1.1) have a critical impact on cellulase adsorption (9 to 70 %) and enzymatic hydrolysis (83.2 to 58.2 %); this may provide insights into the more recalcitrant nature of softwood substrates.
Breaking it down: A new method called biomass reconstruction is introduced to study the effect of lignin chemistry on enzymatic hydrolysis. Hydrolysis is inhibited by increasing degree of condensation and decreasing total hydroxyl content of lignin; this may be a reason for the high recalcitrant nature of softwood substrate. |
---|---|
ISSN: | 1864-5631 1864-564X |
DOI: | 10.1002/cssc.201400042 |