Loading…
Large time behavior of periodic viscosity solutions for uniformly parabolic integro-differential equations
In this paper, we study the large time behavior of solutions of a class of parabolic fully nonlinear integro-differential equations in a periodic setting. In order to do so, we first solve the ergodic problem (or cell problem ), i.e. we construct solutions of the form λ t + v ( x ) . We then prove t...
Saved in:
Published in: | Calculus of variations and partial differential equations 2014-05, Vol.50 (1-2), p.283-304 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we study the large time behavior of solutions of a class of parabolic fully nonlinear integro-differential equations in a periodic setting. In order to do so, we first solve the
ergodic problem
(or
cell problem
), i.e. we construct solutions of the form
λ
t
+
v
(
x
)
.
We then prove that solutions of the Cauchy problem look like those specific solutions as time goes to infinity. We face two key difficulties to carry out this classical program: (1) the fact that we handle the case of “mixed operators” for which the required ellipticity comes from a combination of the properties of the local and nonlocal terms and (2) the treatment of the superlinear case (in the gradient variable). Lipschitz estimates previously proved by the authors (2012) and Strong Maximum principles proved by the third author (2012) play a crucial role in the analysis. |
---|---|
ISSN: | 0944-2669 1432-0835 |
DOI: | 10.1007/s00526-013-0636-2 |