Loading…

Large time behavior of periodic viscosity solutions for uniformly parabolic integro-differential equations

In this paper, we study the large time behavior of solutions of a class of parabolic fully nonlinear integro-differential equations in a periodic setting. In order to do so, we first solve the ergodic problem (or cell problem ), i.e. we construct solutions of the form λ t + v ( x ) . We then prove t...

Full description

Saved in:
Bibliographic Details
Published in:Calculus of variations and partial differential equations 2014-05, Vol.50 (1-2), p.283-304
Main Authors: Barles, Guy, Chasseigne, Emmanuel, Ciomaga, Adina, Imbert, Cyril
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we study the large time behavior of solutions of a class of parabolic fully nonlinear integro-differential equations in a periodic setting. In order to do so, we first solve the ergodic problem (or cell problem ), i.e. we construct solutions of the form λ t + v ( x ) . We then prove that solutions of the Cauchy problem look like those specific solutions as time goes to infinity. We face two key difficulties to carry out this classical program: (1) the fact that we handle the case of “mixed operators” for which the required ellipticity comes from a combination of the properties of the local and nonlocal terms and (2) the treatment of the superlinear case (in the gradient variable). Lipschitz estimates previously proved by the authors (2012) and Strong Maximum principles proved by the third author (2012) play a crucial role in the analysis.
ISSN:0944-2669
1432-0835
DOI:10.1007/s00526-013-0636-2