Loading…

Stochastic fictitious play with continuous action sets

Continuous action space games are ubiquitous in economics. However, whilst learning dynamics in normal form games with finite action sets are now well studied, it is not until recently that their continuous action space counterparts have been examined. We extend stochastic fictitious play to the con...

Full description

Saved in:
Bibliographic Details
Published in:Journal of economic theory 2014-07, Vol.152, p.179-213
Main Authors: Perkins, S., Leslie, D.S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Continuous action space games are ubiquitous in economics. However, whilst learning dynamics in normal form games with finite action sets are now well studied, it is not until recently that their continuous action space counterparts have been examined. We extend stochastic fictitious play to the continuous action space framework. In normal form games with finite action sets the limiting behaviour of a discrete time learning process is often studied using its continuous time counterpart via stochastic approximation. In this paper we study stochastic fictitious play in games with continuous action spaces using the same method. This requires the asymptotic pseudo-trajectory approach to stochastic approximation to be extended to Banach spaces. In particular the limiting behaviour of stochastic fictitious play is studied using the associated smooth best response dynamics on the space of finite signed measures. Using this approach, stochastic fictitious play is shown to converge to an equilibrium point in two-player zero-sum games and a stochastic fictitious play-like process is shown to converge to an equilibrium in negative definite single population games.
ISSN:0022-0531
1095-7235
DOI:10.1016/j.jet.2014.04.008