Loading…

Discrete particle swarm optimization for identifying community structures in signed social networks

Modern science of networks has facilitated us with enormous convenience to the understanding of complex systems. Community structure is believed to be one of the notable features of complex networks representing real complicated systems. Very often, uncovering community structures in networks can be...

Full description

Saved in:
Bibliographic Details
Published in:Neural networks 2014-10, Vol.58, p.4-13
Main Authors: Cai, Qing, Gong, Maoguo, Shen, Bo, Ma, Lijia, Jiao, Licheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Modern science of networks has facilitated us with enormous convenience to the understanding of complex systems. Community structure is believed to be one of the notable features of complex networks representing real complicated systems. Very often, uncovering community structures in networks can be regarded as an optimization problem, thus, many evolutionary algorithms based approaches have been put forward. Particle swarm optimization (PSO) is an artificial intelligent algorithm originated from social behavior such as birds flocking and fish schooling. PSO has been proved to be an effective optimization technique. However, PSO was originally designed for continuous optimization which confounds its applications to discrete contexts. In this paper, a novel discrete PSO algorithm is suggested for identifying community structures in signed networks. In the suggested method, particles’ status has been redesigned in discrete form so as to make PSO proper for discrete scenarios, and particles’ updating rules have been reformulated by making use of the topology of the signed network. Extensive experiments compared with three state-of-the-art approaches on both synthetic and real-world signed networks demonstrate that the proposed method is effective and promising.
ISSN:0893-6080
1879-2782
DOI:10.1016/j.neunet.2014.04.006