Loading…

Now I am ready-now i am not: The influence of pre-TMS oscillations and corticomuscular coherence on motor-evoked potentials

There is a growing body of research on the functional role of oscillatory brain activity. However, its relation to functional connectivity has remained largely obscure. In the sensorimotor system, movement-related changes emerge in the α (8-14 Hz) and β (15-30 Hz) range (event-related desynchronizat...

Full description

Saved in:
Bibliographic Details
Published in:Cerebral cortex (New York, N.Y. 1991) N.Y. 1991), 2014-07, Vol.24 (7), p.1708-1719
Main Authors: Schulz, Hannah, Ubelacker, Teresa, Keil, Julian, Müller, Nadia, Weisz, Nathan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:There is a growing body of research on the functional role of oscillatory brain activity. However, its relation to functional connectivity has remained largely obscure. In the sensorimotor system, movement-related changes emerge in the α (8-14 Hz) and β (15-30 Hz) range (event-related desynchronization, ERD, before and during movement; event-related synchronization, ERS, after movement offset). Some studies suggest that β-ERS may functionally inhibit new movements. According to the gating-by-inhibition framework ( Jensen and Mazaheri 2010), we expected that the ERD would go along with increased corticomuscular coupling, and vice versa. By combining transcranial magnetic stimulation (TMS) and electroencephalography, we were directly able to test this hypothesis. In a reaction time task, single TMS pulses were delivered randomly during ERD/ERS to the motor cortex. The motor-evoked potential (MEP) was then related to the β and α frequencies and corticomuscular coherence. Results indicate that MEPs are smaller when preceded by high pre-TMS β-band power and low pre-TMS α-band corticomuscular coherence (and vice versa) in a network of motor-relevant areas comprising frontal, parietal, and motor cortices. This confirms that an increase in rhythms that putatively reflect functionally inhibited states goes along with weaker coupling of the respective brain regions.
ISSN:1047-3211
1460-2199
DOI:10.1093/cercor/bht024