Loading…

Automatic calibration of conceptual rainfall-runoff models: sensitivity to calibration data

The identification of hydrologic models requires that appropriate data be selected for model calibration. In the research presented here, the shuffled complex evolution (SCE-UA) global optimization method was used to calibrate the NWSRFS-SMA conceptual rainfall-runoff flood forecasting model of the...

Full description

Saved in:
Bibliographic Details
Published in:Journal of hydrology (Amsterdam) 1996, Vol.181 (1), p.23-48
Main Authors: Yapo, Patrice O., Gupta, Hoshin Vijai, Sorooshian, Soroosh
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a479t-a0393b4ec9706b9fcf496ef0b6e28976b9db372dbce5be4df741e498fe25083e3
cites cdi_FETCH-LOGICAL-a479t-a0393b4ec9706b9fcf496ef0b6e28976b9db372dbce5be4df741e498fe25083e3
container_end_page 48
container_issue 1
container_start_page 23
container_title Journal of hydrology (Amsterdam)
container_volume 181
creator Yapo, Patrice O.
Gupta, Hoshin Vijai
Sorooshian, Soroosh
description The identification of hydrologic models requires that appropriate data be selected for model calibration. In the research presented here, the shuffled complex evolution (SCE-UA) global optimization method was used to calibrate the NWSRFS-SMA conceptual rainfall-runoff flood forecasting model of the US National Weather Service, using a 40-year record of historical data. Based on 344 calibration runs using different lengths of data from different sections of the historical record, we conclude that approximately 8 years of data are required to obtain calibrations that are relatively insensitive to the period selected. Further, the reduction in parameter uncertainty is maximal when the wettest data periods on record are used. A residual analysis is used to compare the performance of the daily root mean square (DRMS) and heteroscedastic maximum likelihood error (HMLE) objective functions. The results suggest that the factor currently limiting model performance is the unavailability of strategies that explicitly account for model error during calibration.
doi_str_mv 10.1016/0022-1694(95)02918-4
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_15585611</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0022169495029184</els_id><sourcerecordid>13641707</sourcerecordid><originalsourceid>FETCH-LOGICAL-a479t-a0393b4ec9706b9fcf496ef0b6e28976b9db372dbce5be4df741e498fe25083e3</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK7-A8GeRA_VpEk_4kFYFr9gwYPuyUNI04lE2mZN0gX_vakVwYvOZYbheWfgQeiY4AuCSXGJcZalpODsjOfnOOOkStkOmpGq5GlW4nIXzX6QfXTg_RuORSmboZfFEGwng1GJkq2pXRxtn1idKNsr2IRBtomTpteybVM39FbrpLMNtP4q8dB7E8zWhI8k2F8HGhnkIdqLKQ9H332O1rc3z8v7dPV497BcrFLJSh5SiSmnNQPFS1zUXCvNeAEa1wVkFS_jqqlpmTW1grwG1uiSEWC80pDluKJA5-h0urtx9n0AH0RnvIK2lT3YwQuS51VeEPI_SAtGoq8IsglUznrvQIuNM510H4JgMSoXo08x-hQ8F1_KBYuxkymmpRXy1Rkv1k8ZJhSTPLZqJK4nIvqDrQEnvDIQRTfGgQqisebvF5_jQJLe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>13641707</pqid></control><display><type>article</type><title>Automatic calibration of conceptual rainfall-runoff models: sensitivity to calibration data</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Yapo, Patrice O. ; Gupta, Hoshin Vijai ; Sorooshian, Soroosh</creator><creatorcontrib>Yapo, Patrice O. ; Gupta, Hoshin Vijai ; Sorooshian, Soroosh</creatorcontrib><description>The identification of hydrologic models requires that appropriate data be selected for model calibration. In the research presented here, the shuffled complex evolution (SCE-UA) global optimization method was used to calibrate the NWSRFS-SMA conceptual rainfall-runoff flood forecasting model of the US National Weather Service, using a 40-year record of historical data. Based on 344 calibration runs using different lengths of data from different sections of the historical record, we conclude that approximately 8 years of data are required to obtain calibrations that are relatively insensitive to the period selected. Further, the reduction in parameter uncertainty is maximal when the wettest data periods on record are used. A residual analysis is used to compare the performance of the daily root mean square (DRMS) and heteroscedastic maximum likelihood error (HMLE) objective functions. The results suggest that the factor currently limiting model performance is the unavailability of strategies that explicitly account for model error during calibration.</description><identifier>ISSN: 0022-1694</identifier><identifier>EISSN: 1879-2707</identifier><identifier>DOI: 10.1016/0022-1694(95)02918-4</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>calibration ; daily root mean square ; flooding ; hydrologic data ; hydrology ; maximum likelihood ; meteorological data ; optimization ; prediction ; rain ; rivers ; runoff ; simulation models ; soil moisture accounting model ; statistical analysis ; stream flow</subject><ispartof>Journal of hydrology (Amsterdam), 1996, Vol.181 (1), p.23-48</ispartof><rights>1996</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a479t-a0393b4ec9706b9fcf496ef0b6e28976b9db372dbce5be4df741e498fe25083e3</citedby><cites>FETCH-LOGICAL-a479t-a0393b4ec9706b9fcf496ef0b6e28976b9db372dbce5be4df741e498fe25083e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,4012,27906,27907,27908</link.rule.ids></links><search><creatorcontrib>Yapo, Patrice O.</creatorcontrib><creatorcontrib>Gupta, Hoshin Vijai</creatorcontrib><creatorcontrib>Sorooshian, Soroosh</creatorcontrib><title>Automatic calibration of conceptual rainfall-runoff models: sensitivity to calibration data</title><title>Journal of hydrology (Amsterdam)</title><description>The identification of hydrologic models requires that appropriate data be selected for model calibration. In the research presented here, the shuffled complex evolution (SCE-UA) global optimization method was used to calibrate the NWSRFS-SMA conceptual rainfall-runoff flood forecasting model of the US National Weather Service, using a 40-year record of historical data. Based on 344 calibration runs using different lengths of data from different sections of the historical record, we conclude that approximately 8 years of data are required to obtain calibrations that are relatively insensitive to the period selected. Further, the reduction in parameter uncertainty is maximal when the wettest data periods on record are used. A residual analysis is used to compare the performance of the daily root mean square (DRMS) and heteroscedastic maximum likelihood error (HMLE) objective functions. The results suggest that the factor currently limiting model performance is the unavailability of strategies that explicitly account for model error during calibration.</description><subject>calibration</subject><subject>daily root mean square</subject><subject>flooding</subject><subject>hydrologic data</subject><subject>hydrology</subject><subject>maximum likelihood</subject><subject>meteorological data</subject><subject>optimization</subject><subject>prediction</subject><subject>rain</subject><subject>rivers</subject><subject>runoff</subject><subject>simulation models</subject><subject>soil moisture accounting model</subject><subject>statistical analysis</subject><subject>stream flow</subject><issn>0022-1694</issn><issn>1879-2707</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouK7-A8GeRA_VpEk_4kFYFr9gwYPuyUNI04lE2mZN0gX_vakVwYvOZYbheWfgQeiY4AuCSXGJcZalpODsjOfnOOOkStkOmpGq5GlW4nIXzX6QfXTg_RuORSmboZfFEGwng1GJkq2pXRxtn1idKNsr2IRBtomTpteybVM39FbrpLMNtP4q8dB7E8zWhI8k2F8HGhnkIdqLKQ9H332O1rc3z8v7dPV497BcrFLJSh5SiSmnNQPFS1zUXCvNeAEa1wVkFS_jqqlpmTW1grwG1uiSEWC80pDluKJA5-h0urtx9n0AH0RnvIK2lT3YwQuS51VeEPI_SAtGoq8IsglUznrvQIuNM510H4JgMSoXo08x-hQ8F1_KBYuxkymmpRXy1Rkv1k8ZJhSTPLZqJK4nIvqDrQEnvDIQRTfGgQqisebvF5_jQJLe</recordid><startdate>1996</startdate><enddate>1996</enddate><creator>Yapo, Patrice O.</creator><creator>Gupta, Hoshin Vijai</creator><creator>Sorooshian, Soroosh</creator><general>Elsevier B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope></search><sort><creationdate>1996</creationdate><title>Automatic calibration of conceptual rainfall-runoff models: sensitivity to calibration data</title><author>Yapo, Patrice O. ; Gupta, Hoshin Vijai ; Sorooshian, Soroosh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a479t-a0393b4ec9706b9fcf496ef0b6e28976b9db372dbce5be4df741e498fe25083e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>calibration</topic><topic>daily root mean square</topic><topic>flooding</topic><topic>hydrologic data</topic><topic>hydrology</topic><topic>maximum likelihood</topic><topic>meteorological data</topic><topic>optimization</topic><topic>prediction</topic><topic>rain</topic><topic>rivers</topic><topic>runoff</topic><topic>simulation models</topic><topic>soil moisture accounting model</topic><topic>statistical analysis</topic><topic>stream flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yapo, Patrice O.</creatorcontrib><creatorcontrib>Gupta, Hoshin Vijai</creatorcontrib><creatorcontrib>Sorooshian, Soroosh</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Journal of hydrology (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yapo, Patrice O.</au><au>Gupta, Hoshin Vijai</au><au>Sorooshian, Soroosh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic calibration of conceptual rainfall-runoff models: sensitivity to calibration data</atitle><jtitle>Journal of hydrology (Amsterdam)</jtitle><date>1996</date><risdate>1996</risdate><volume>181</volume><issue>1</issue><spage>23</spage><epage>48</epage><pages>23-48</pages><issn>0022-1694</issn><eissn>1879-2707</eissn><abstract>The identification of hydrologic models requires that appropriate data be selected for model calibration. In the research presented here, the shuffled complex evolution (SCE-UA) global optimization method was used to calibrate the NWSRFS-SMA conceptual rainfall-runoff flood forecasting model of the US National Weather Service, using a 40-year record of historical data. Based on 344 calibration runs using different lengths of data from different sections of the historical record, we conclude that approximately 8 years of data are required to obtain calibrations that are relatively insensitive to the period selected. Further, the reduction in parameter uncertainty is maximal when the wettest data periods on record are used. A residual analysis is used to compare the performance of the daily root mean square (DRMS) and heteroscedastic maximum likelihood error (HMLE) objective functions. The results suggest that the factor currently limiting model performance is the unavailability of strategies that explicitly account for model error during calibration.</abstract><pub>Elsevier B.V</pub><doi>10.1016/0022-1694(95)02918-4</doi><tpages>26</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-1694
ispartof Journal of hydrology (Amsterdam), 1996, Vol.181 (1), p.23-48
issn 0022-1694
1879-2707
language eng
recordid cdi_proquest_miscellaneous_15585611
source ScienceDirect Freedom Collection 2022-2024
subjects calibration
daily root mean square
flooding
hydrologic data
hydrology
maximum likelihood
meteorological data
optimization
prediction
rain
rivers
runoff
simulation models
soil moisture accounting model
statistical analysis
stream flow
title Automatic calibration of conceptual rainfall-runoff models: sensitivity to calibration data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T03%3A39%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20calibration%20of%20conceptual%20rainfall-runoff%20models:%20sensitivity%20to%20calibration%20data&rft.jtitle=Journal%20of%20hydrology%20(Amsterdam)&rft.au=Yapo,%20Patrice%20O.&rft.date=1996&rft.volume=181&rft.issue=1&rft.spage=23&rft.epage=48&rft.pages=23-48&rft.issn=0022-1694&rft.eissn=1879-2707&rft_id=info:doi/10.1016/0022-1694(95)02918-4&rft_dat=%3Cproquest_cross%3E13641707%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a479t-a0393b4ec9706b9fcf496ef0b6e28976b9db372dbce5be4df741e498fe25083e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=13641707&rft_id=info:pmid/&rfr_iscdi=true