Loading…
Automatic calibration of conceptual rainfall-runoff models: sensitivity to calibration data
The identification of hydrologic models requires that appropriate data be selected for model calibration. In the research presented here, the shuffled complex evolution (SCE-UA) global optimization method was used to calibrate the NWSRFS-SMA conceptual rainfall-runoff flood forecasting model of the...
Saved in:
Published in: | Journal of hydrology (Amsterdam) 1996, Vol.181 (1), p.23-48 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a479t-a0393b4ec9706b9fcf496ef0b6e28976b9db372dbce5be4df741e498fe25083e3 |
---|---|
cites | cdi_FETCH-LOGICAL-a479t-a0393b4ec9706b9fcf496ef0b6e28976b9db372dbce5be4df741e498fe25083e3 |
container_end_page | 48 |
container_issue | 1 |
container_start_page | 23 |
container_title | Journal of hydrology (Amsterdam) |
container_volume | 181 |
creator | Yapo, Patrice O. Gupta, Hoshin Vijai Sorooshian, Soroosh |
description | The identification of hydrologic models requires that appropriate data be selected for model calibration. In the research presented here, the shuffled complex evolution (SCE-UA) global optimization method was used to calibrate the NWSRFS-SMA conceptual rainfall-runoff flood forecasting model of the US National Weather Service, using a 40-year record of historical data. Based on 344 calibration runs using different lengths of data from different sections of the historical record, we conclude that approximately 8 years of data are required to obtain calibrations that are relatively insensitive to the period selected. Further, the reduction in parameter uncertainty is maximal when the wettest data periods on record are used. A residual analysis is used to compare the performance of the daily root mean square (DRMS) and heteroscedastic maximum likelihood error (HMLE) objective functions. The results suggest that the factor currently limiting model performance is the unavailability of strategies that explicitly account for model error during calibration. |
doi_str_mv | 10.1016/0022-1694(95)02918-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_15585611</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0022169495029184</els_id><sourcerecordid>13641707</sourcerecordid><originalsourceid>FETCH-LOGICAL-a479t-a0393b4ec9706b9fcf496ef0b6e28976b9db372dbce5be4df741e498fe25083e3</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK7-A8GeRA_VpEk_4kFYFr9gwYPuyUNI04lE2mZN0gX_vakVwYvOZYbheWfgQeiY4AuCSXGJcZalpODsjOfnOOOkStkOmpGq5GlW4nIXzX6QfXTg_RuORSmboZfFEGwng1GJkq2pXRxtn1idKNsr2IRBtomTpteybVM39FbrpLMNtP4q8dB7E8zWhI8k2F8HGhnkIdqLKQ9H332O1rc3z8v7dPV497BcrFLJSh5SiSmnNQPFS1zUXCvNeAEa1wVkFS_jqqlpmTW1grwG1uiSEWC80pDluKJA5-h0urtx9n0AH0RnvIK2lT3YwQuS51VeEPI_SAtGoq8IsglUznrvQIuNM510H4JgMSoXo08x-hQ8F1_KBYuxkymmpRXy1Rkv1k8ZJhSTPLZqJK4nIvqDrQEnvDIQRTfGgQqisebvF5_jQJLe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>13641707</pqid></control><display><type>article</type><title>Automatic calibration of conceptual rainfall-runoff models: sensitivity to calibration data</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Yapo, Patrice O. ; Gupta, Hoshin Vijai ; Sorooshian, Soroosh</creator><creatorcontrib>Yapo, Patrice O. ; Gupta, Hoshin Vijai ; Sorooshian, Soroosh</creatorcontrib><description>The identification of hydrologic models requires that appropriate data be selected for model calibration. In the research presented here, the shuffled complex evolution (SCE-UA) global optimization method was used to calibrate the NWSRFS-SMA conceptual rainfall-runoff flood forecasting model of the US National Weather Service, using a 40-year record of historical data. Based on 344 calibration runs using different lengths of data from different sections of the historical record, we conclude that approximately 8 years of data are required to obtain calibrations that are relatively insensitive to the period selected. Further, the reduction in parameter uncertainty is maximal when the wettest data periods on record are used. A residual analysis is used to compare the performance of the daily root mean square (DRMS) and heteroscedastic maximum likelihood error (HMLE) objective functions. The results suggest that the factor currently limiting model performance is the unavailability of strategies that explicitly account for model error during calibration.</description><identifier>ISSN: 0022-1694</identifier><identifier>EISSN: 1879-2707</identifier><identifier>DOI: 10.1016/0022-1694(95)02918-4</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>calibration ; daily root mean square ; flooding ; hydrologic data ; hydrology ; maximum likelihood ; meteorological data ; optimization ; prediction ; rain ; rivers ; runoff ; simulation models ; soil moisture accounting model ; statistical analysis ; stream flow</subject><ispartof>Journal of hydrology (Amsterdam), 1996, Vol.181 (1), p.23-48</ispartof><rights>1996</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a479t-a0393b4ec9706b9fcf496ef0b6e28976b9db372dbce5be4df741e498fe25083e3</citedby><cites>FETCH-LOGICAL-a479t-a0393b4ec9706b9fcf496ef0b6e28976b9db372dbce5be4df741e498fe25083e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,4012,27906,27907,27908</link.rule.ids></links><search><creatorcontrib>Yapo, Patrice O.</creatorcontrib><creatorcontrib>Gupta, Hoshin Vijai</creatorcontrib><creatorcontrib>Sorooshian, Soroosh</creatorcontrib><title>Automatic calibration of conceptual rainfall-runoff models: sensitivity to calibration data</title><title>Journal of hydrology (Amsterdam)</title><description>The identification of hydrologic models requires that appropriate data be selected for model calibration. In the research presented here, the shuffled complex evolution (SCE-UA) global optimization method was used to calibrate the NWSRFS-SMA conceptual rainfall-runoff flood forecasting model of the US National Weather Service, using a 40-year record of historical data. Based on 344 calibration runs using different lengths of data from different sections of the historical record, we conclude that approximately 8 years of data are required to obtain calibrations that are relatively insensitive to the period selected. Further, the reduction in parameter uncertainty is maximal when the wettest data periods on record are used. A residual analysis is used to compare the performance of the daily root mean square (DRMS) and heteroscedastic maximum likelihood error (HMLE) objective functions. The results suggest that the factor currently limiting model performance is the unavailability of strategies that explicitly account for model error during calibration.</description><subject>calibration</subject><subject>daily root mean square</subject><subject>flooding</subject><subject>hydrologic data</subject><subject>hydrology</subject><subject>maximum likelihood</subject><subject>meteorological data</subject><subject>optimization</subject><subject>prediction</subject><subject>rain</subject><subject>rivers</subject><subject>runoff</subject><subject>simulation models</subject><subject>soil moisture accounting model</subject><subject>statistical analysis</subject><subject>stream flow</subject><issn>0022-1694</issn><issn>1879-2707</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouK7-A8GeRA_VpEk_4kFYFr9gwYPuyUNI04lE2mZN0gX_vakVwYvOZYbheWfgQeiY4AuCSXGJcZalpODsjOfnOOOkStkOmpGq5GlW4nIXzX6QfXTg_RuORSmboZfFEGwng1GJkq2pXRxtn1idKNsr2IRBtomTpteybVM39FbrpLMNtP4q8dB7E8zWhI8k2F8HGhnkIdqLKQ9H332O1rc3z8v7dPV497BcrFLJSh5SiSmnNQPFS1zUXCvNeAEa1wVkFS_jqqlpmTW1grwG1uiSEWC80pDluKJA5-h0urtx9n0AH0RnvIK2lT3YwQuS51VeEPI_SAtGoq8IsglUznrvQIuNM510H4JgMSoXo08x-hQ8F1_KBYuxkymmpRXy1Rkv1k8ZJhSTPLZqJK4nIvqDrQEnvDIQRTfGgQqisebvF5_jQJLe</recordid><startdate>1996</startdate><enddate>1996</enddate><creator>Yapo, Patrice O.</creator><creator>Gupta, Hoshin Vijai</creator><creator>Sorooshian, Soroosh</creator><general>Elsevier B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope></search><sort><creationdate>1996</creationdate><title>Automatic calibration of conceptual rainfall-runoff models: sensitivity to calibration data</title><author>Yapo, Patrice O. ; Gupta, Hoshin Vijai ; Sorooshian, Soroosh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a479t-a0393b4ec9706b9fcf496ef0b6e28976b9db372dbce5be4df741e498fe25083e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>calibration</topic><topic>daily root mean square</topic><topic>flooding</topic><topic>hydrologic data</topic><topic>hydrology</topic><topic>maximum likelihood</topic><topic>meteorological data</topic><topic>optimization</topic><topic>prediction</topic><topic>rain</topic><topic>rivers</topic><topic>runoff</topic><topic>simulation models</topic><topic>soil moisture accounting model</topic><topic>statistical analysis</topic><topic>stream flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yapo, Patrice O.</creatorcontrib><creatorcontrib>Gupta, Hoshin Vijai</creatorcontrib><creatorcontrib>Sorooshian, Soroosh</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Journal of hydrology (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yapo, Patrice O.</au><au>Gupta, Hoshin Vijai</au><au>Sorooshian, Soroosh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic calibration of conceptual rainfall-runoff models: sensitivity to calibration data</atitle><jtitle>Journal of hydrology (Amsterdam)</jtitle><date>1996</date><risdate>1996</risdate><volume>181</volume><issue>1</issue><spage>23</spage><epage>48</epage><pages>23-48</pages><issn>0022-1694</issn><eissn>1879-2707</eissn><abstract>The identification of hydrologic models requires that appropriate data be selected for model calibration. In the research presented here, the shuffled complex evolution (SCE-UA) global optimization method was used to calibrate the NWSRFS-SMA conceptual rainfall-runoff flood forecasting model of the US National Weather Service, using a 40-year record of historical data. Based on 344 calibration runs using different lengths of data from different sections of the historical record, we conclude that approximately 8 years of data are required to obtain calibrations that are relatively insensitive to the period selected. Further, the reduction in parameter uncertainty is maximal when the wettest data periods on record are used. A residual analysis is used to compare the performance of the daily root mean square (DRMS) and heteroscedastic maximum likelihood error (HMLE) objective functions. The results suggest that the factor currently limiting model performance is the unavailability of strategies that explicitly account for model error during calibration.</abstract><pub>Elsevier B.V</pub><doi>10.1016/0022-1694(95)02918-4</doi><tpages>26</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1694 |
ispartof | Journal of hydrology (Amsterdam), 1996, Vol.181 (1), p.23-48 |
issn | 0022-1694 1879-2707 |
language | eng |
recordid | cdi_proquest_miscellaneous_15585611 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | calibration daily root mean square flooding hydrologic data hydrology maximum likelihood meteorological data optimization prediction rain rivers runoff simulation models soil moisture accounting model statistical analysis stream flow |
title | Automatic calibration of conceptual rainfall-runoff models: sensitivity to calibration data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T03%3A39%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20calibration%20of%20conceptual%20rainfall-runoff%20models:%20sensitivity%20to%20calibration%20data&rft.jtitle=Journal%20of%20hydrology%20(Amsterdam)&rft.au=Yapo,%20Patrice%20O.&rft.date=1996&rft.volume=181&rft.issue=1&rft.spage=23&rft.epage=48&rft.pages=23-48&rft.issn=0022-1694&rft.eissn=1879-2707&rft_id=info:doi/10.1016/0022-1694(95)02918-4&rft_dat=%3Cproquest_cross%3E13641707%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a479t-a0393b4ec9706b9fcf496ef0b6e28976b9db372dbce5be4df741e498fe25083e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=13641707&rft_id=info:pmid/&rfr_iscdi=true |