Loading…
Direct projection to latent variable space for fault detection
Partial least squares (PLSs) often require many latent variables (LVs) T to describe the variations in process variables X correlated with quality variables Y, which are obtained via the traditional nonlinear iterative PLS (NIPALS) optimal solution based on (X, Y). Total projection to latent structu...
Saved in:
Published in: | Journal of the Franklin Institute 2014-03, Vol.351 (3), p.1226-1250 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Partial least squares (PLSs) often require many latent variables (LVs) T to describe the variations in process variables X correlated with quality variables Y, which are obtained via the traditional nonlinear iterative PLS (NIPALS) optimal solution based on (X, Y). Total projection to latent structures (T-PLSs) performs further decomposition to extract LVs Ty directly related to Y from T, which are obtained by the PCA optimal solution based on the predicted value of Y. Inspired by T-PLS, combined with practical process characteristics, two fault detection approaches are proposed in this paper to solve problems encountered by T-PLS. Without the NIPALS, (X, Y) are projected into the latent variable space determined by main variations of Y directly. Furthermore, the structure and characteristics of several modified methods in statistical analysis are studied based on calculation procedures of solving PCA, PLS and T-PLS optimization problems, and the geometric significance of the T-PLS model is demonstrated in detail. Simulation analysis and case studies both indicate the effectiveness of the proposed approaches. |
---|---|
ISSN: | 0016-0032 1879-2693 |
DOI: | 10.1016/j.jfranklin.2013.10.007 |