Loading…
Accurate measurements of ¹³C-¹³C distances in uniformly ¹³C-labeled proteins using multi-dimensional four-oscillating field solid-state NMR spectroscopy
Application of sets of (13)C-(13)C internuclear distance restraints constitutes a typical key element in determining the structure of peptides and proteins by magic-angle-spinning solid-state NMR spectroscopy. Accurate measurements of the structurally highly important (13)C-(13)C distances in unifor...
Saved in:
Published in: | The Journal of chemical physics 2014-09, Vol.141 (11), p.114201-114201 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Application of sets of (13)C-(13)C internuclear distance restraints constitutes a typical key element in determining the structure of peptides and proteins by magic-angle-spinning solid-state NMR spectroscopy. Accurate measurements of the structurally highly important (13)C-(13)C distances in uniformly (13)C-labeled peptides and proteins, however, pose a big challenge due to the problem of dipolar truncation. Here, we present novel two-dimensional (2D) solid-state NMR experiments capable of extracting distances between carbonyl ((13)C') and aliphatic ((13)C(aliphatic)) spins with high accuracy. The method is based on an improved version of the four-oscillating field (FOLD) technique [L. A. Straasø, M. Bjerring, N. Khaneja, and N. C. Nielsen, J. Chem. Phys. 130, 225103 (2009)] which circumvents the problem of dipolar truncation, thereby offering a base for accurate extraction of internuclear distances in many-spin systems. The ability to extract reliable accurate distances is demonstrated using one- and two-dimensional variants of the FOLD experiment on uniformly (13)C,(15)N-labeled-L-isoleucine. In a more challenging biological application, FOLD 2D experiments are used to determine a large number of (13)C'-(13)C(aliphatic) distances in amyloid fibrils formed by the SNNFGAILSS fibrillating core of the human islet amyloid polypeptide with uniform (13)C,(15)N-labeling on the FGAIL fragment. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/1.4895527 |