Loading…
Two-dimensional periodic waves in shallow water
Experimental data are presented that demonstrate the existence of a family of gravitational water waves that propagate practically without change of form on the surface of shallow water of uniform depth. The surface patterns of these waves are genuinely two-dimensional and fully periodic, i.e. they...
Saved in:
Published in: | Journal of fluid mechanics 1989-12, Vol.209, p.567-589 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Experimental data are presented that demonstrate the existence of a family of gravitational water waves that propagate practically without change of form on the surface of shallow water of uniform depth. The surface patterns of these waves are genuinely two-dimensional and fully periodic, i.e. they are periodic in two spatial directions and in time. The amplitudes of these waves need not be small; their form persists even up to breaking. The waves are easy to generate experimentally, and they are observed to propagate in a stable manner, even when perturbed significantly. The measured waves are described with reasonable accuracy by a family of exact solutions of the Kadomtsev-Petviashvili equation (KP solutions of genus 2) over the entire parameter range of the experiments, including waves well outside the putative range of validity of the KP equation. These genus-2 solutions of the KP equation may be viewed as two-dimensional generalizations of cnoidal waves. |
---|---|
ISSN: | 0022-1120 1469-7645 |
DOI: | 10.1017/S0022112089003228 |