Loading…

Modelling the influence of photospheric turbulence on solar flare statistics

Solar flares stem from the reconnection of twisted magnetic field lines in the solar photosphere. The energy and waiting time distributions of these events follow complex patterns that have been carefully considered in the past and that bear some resemblance with earthquakes and stockmarkets. Here w...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2014-09, Vol.5 (1), p.5035-5035, Article 5035
Main Authors: Mendoza, M., Kaydul, A., de Arcangelis, L., Andrade Jr, J. S., Herrmann, H. J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Solar flares stem from the reconnection of twisted magnetic field lines in the solar photosphere. The energy and waiting time distributions of these events follow complex patterns that have been carefully considered in the past and that bear some resemblance with earthquakes and stockmarkets. Here we explore in detail the tangling motion of interacting flux tubes anchored in the plasma and the energy ejections resulting when they recombine. The mechanism for energy accumulation and release in the flow is reminiscent of self-organized criticality. From this model, we suggest the origin for two important and widely studied properties of solar flare statistics, including the time–energy correlations. We first propose that the scale-free energy distribution of solar flares is largely due to the twist exerted by the vorticity of the turbulent photosphere. Second, the long-range temporal and time–energy correlations appear to arise from the tube–tube interactions. The agreement with satellite measurements is encouraging. Solar flares follow complex statistical patterns, making it hard to understand and model their underlying physical processes. Here, the authors present a model based on reconnection of magnetic flux tubes twisted by turbulent photospheric flow that reproduces flare statistics and energy–time correlations.
ISSN:2041-1723
2041-1723
DOI:10.1038/ncomms6035