Loading…

Methylglyoxal is associated with bacteriostatic activity of high fructose agave syrups

Three α-ketoaldehydes, potentially present in high fructose agave syrups (HFASs) as intermediates of the Maillard reaction, were determined. A previously reported HPLC-FLD procedure based on pre-column derivatisation with 4-methoxy-o-phenylenediamine was adopted, yielding the method quantification l...

Full description

Saved in:
Bibliographic Details
Published in:Food chemistry 2014-12, Vol.165, p.444-450
Main Authors: CORRALES ESCOBOSA, Alma Rosa, OJEDA, Armando Gomez, WROBEL, Kazimierz, MAGANA, Armando Alcazar, WROBEL, Katarzyna
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Three α-ketoaldehydes, potentially present in high fructose agave syrups (HFASs) as intermediates of the Maillard reaction, were determined. A previously reported HPLC-FLD procedure based on pre-column derivatisation with 4-methoxy-o-phenylenediamine was adopted, yielding the method quantification limits 0.11 mg/kg, 0.10mg/kg, 0.09 mg/kg for glyoxal, methylglyoxal (MGo) and diacetyl, respectively. The obtained results revealed high concentrations of methylglyoxal in HFASs (average 102 ± 91 mg/kg, range 15.6-315 mg/kg) as compared to commercial Mexican bee honeys or corn syrups. Hydrogen peroxide was generated in all HFASs upon dilution, yet to less extent than in bee honeys. HFASs presented bacteriostatic activity against Bacillus subtilis and Escherichia coli; catalase addition had minimum effect on the assay results in syrups with elevated MGo. Principal component analysis revealed direct association between growth inhibition and MGo. It is concluded that elevated concentration of MGo in HFASs is at least in part responsible for their non-peroxide bacteriostatic activity.
ISSN:0308-8146
1873-7072
DOI:10.1016/j.foodchem.2014.05.140