Loading…
The effect of quisqualic acid-induced lesions of the nucleus basalis magnocellularis on latent inhibition
Latent inhibition (LI) is a reduction in the rate of acquisition of a Pavlovian conditioned response that results from prior nonreinforced preexposure to a conditioned stimulus (CS). LI has been suggested to reflect the operation of mechanisms involved in stimulus selection for subsequent cognitive...
Saved in:
Published in: | Brain research bulletin 1996, Vol.41 (5), p.313-317 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Latent inhibition (LI) is a reduction in the rate of acquisition of a Pavlovian conditioned response that results from prior nonreinforced preexposure to a conditioned stimulus (CS). LI has been suggested to reflect the operation of mechanisms involved in stimulus selection for subsequent cognitive processing. The present experiment was conducted to assess the effect of bilateral lesions of the nucleus basalis magnocellularis (NBM) on LI employing a conditioned emotional response paradigm. Bilateral lesions of the NBM were produced by administration of 0.12 M quisqualic acid and resulted in decreased cortical acetylcholinesterase staining, as well as a 40% reduction in cortical choline acetyltransferase activity. Following lever press training, preexposed animals received 40 presentations of a 60-s tone CS. Nonpreexposed animals received no tone presentations. Acquisition of conditioned suppression was then assessed over the course of 4 tone-shock (0.6 mA, 0.5 s) pairings. Control, preexposed animals displayed a retarded rate of acquisition in comparison to nonpreexposed controls, thereby demonstrating that the parameters used in the present experiment produced LI. In contrast, lesioned animals preexposed to the CS acquired conditioned suppression as readily as nonpreexposed lesioned animals. However, the acquisition of conditioned suppression in both lesioned groups was found to be similar to that displayed in the preexposed control group. This pattern of results was interpreted as being attributable to a lesion-induced impairment in the ability to maintain stimulus processing, rather than a deficit in the ability to filter a stimulus. |
---|---|
ISSN: | 0361-9230 1873-2747 |
DOI: | 10.1016/S0361-9230(96)00191-8 |