Loading…

Proteolytic release and crystallization of the RNase H domain of human immunodeficiency virus type 1 reverse transcriptase

The RNase H domain of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase was released from recombinant DHFR-RNase H fusion protein by the action of HIV-1 protease and crystallized as large trigonal prisms that diffract x-rays to at least 2.4-A resolution. The protease cleavage occurre...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 1991-08, Vol.266 (22), p.14697-14702
Main Authors: Z Hostomska, D A Matthews, J F Davies, 2nd, B R Nodes, Z Hostomsky
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The RNase H domain of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase was released from recombinant DHFR-RNase H fusion protein by the action of HIV-1 protease and crystallized as large trigonal prisms that diffract x-rays to at least 2.4-A resolution. The protease cleavage occurred 18 residues away from the Phe440-Tyr441 site reported to be processed during maturation of the reverse transcriptase heterodimer. Mutagenesis of the protease-sensitive region (residues 430-440), which is part of the crystallized domain, indicates that any alteration of the wild-type sequence results in increased proteolysis of the p66 subunit. A model of asymmetric processing in HIV-1 reserve transcriptase which involves partial unfolding of the RNase H domain is proposed based on these results and the recently reported three-dimensional structure of this domain.
ISSN:0021-9258
1083-351X
DOI:10.1016/S0021-9258(18)98742-9