Loading…

Evaluation of ERA-Interim Monthly Temperature Data over the Tibetan Plateau

In this study, surface air temperature from 75 meteorological stations above 3000 m on the Tibetan Plateau are applied for evaluation of the European Centre for Medium-Range Weather Forecasts(ECMWF) third-generation reanalysis product ERA-Interim in the period of 1979-2010. High correlations ranging...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mountain science 2014-09, Vol.11 (5), p.1154-1168
Main Authors: Gao, Lu, Hao, Lu, Chen, Xing-wei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this study, surface air temperature from 75 meteorological stations above 3000 m on the Tibetan Plateau are applied for evaluation of the European Centre for Medium-Range Weather Forecasts(ECMWF) third-generation reanalysis product ERA-Interim in the period of 1979-2010. High correlations ranging from 0.973 to 0.999 indicate that ERA-Interim could capture the annual cycle very well. However, an average root-meansquare error(rmse) of 3.7°C for all stations reveals that ERA-Interim could not be applied directly for the individual sites. The biases can be mainly attributed to the altitude differences between ERA-Interim grid points and stations. An elevation correction method based on monthly lapse rates is limited to reduce the bias for all stations. Generally, ERA-Interim captured the Plateau-Wide annual and seasonal climatologies very well. The spatial variance is highly related to the topographic features of the TP. The temperature increases significantly(10°C- 15°C) from the western to the eastern Tibetan Plateau for all seasons, in particular during winter and summer. A significant warming trend(0.49°C/decade) is found over the entire Tibetan Plateau using station time series from 1979-2010. ERA-Interim captures the annual warming trend with an increase rate of 0.33°C /decade very well. The observation data and ERA-Interim data both showed the largest warming trends in winter with values of 0.67°C/decade and 0.41°C/decade, respectively. We conclude that in general ERA-Interim captures the temperature trends very well and ERA-Interim is reliable for climate change investigation over the Tibetan Plateau under the premise of cautious interpretation.
ISSN:1672-6316
1993-0321
1008-2786
DOI:10.1007/s11629-014-3013-5