Loading…

Elevation of Intracellular cAMP Inhibits RhoA Activation and Integrin-dependent Leukocyte Adhesion Induced by Chemoattractants

Chemoattractant receptors of the serpentine, heterotrimeric Gαi protein-linked family can activate leukocyte integrins and in this role regulate leukocyte traffic and cell-cell interactions in immune and inflammatory responses. Using a mouse lymphoid cell line transfected with human formyl peptide o...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 1997-09, Vol.272 (39), p.24141-24144
Main Authors: Laudanna, Carlo, Campbell, James J., Butcher, Eugene C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Chemoattractant receptors of the serpentine, heterotrimeric Gαi protein-linked family can activate leukocyte integrins and in this role regulate leukocyte traffic and cell-cell interactions in immune and inflammatory responses. Using a mouse lymphoid cell line transfected with human formyl peptide or interleukin-8 receptors and normal human neutrophils as models, we show that cAMP functions as a gating element on the chemoattractant-induced rho-dependent signaling pathway leading to leukocyte integrin activation and adhesion. cAMP, acting through protein kinase A, inhibits chemoattractant-triggered integrin-dependent leukocyte adhesion. cAMP also prevents guanine nucleotide exchange on RhoA, a small GTP-binding protein of the rho subfamily, which is activated in seconds by chemoattractants. In contrast, chemoattractant-triggered intracellular calcium elevation is unaffected by cAMP, and cAMP has no effect on rho-dependent adhesion and RhoA guanine nucleotide exchange triggered through the independent protein kinase C pathway. These data suggest that cAMP-induced inhibition of rho activation may be responsible for the anti-adhesive effect of cAMP and may contribute to the anti-inflammatory activity of cAMP elevating agonists and drugs. Moreover, the findings extend the concept of cyclic nucleotide gating as a broadly important mechanism in the regulation of intracellular signaling pathways and the cellular activities they control.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.272.39.24141