Loading…

Complex mass wasting response of drainage basins to forest management in coastal British Columbia

The impacts of logging activities on mass wasting were examined in five watersheds in the coastal mountains of British Columbia. Historical aerial photos were used to document mass wasting events, and their occurrence was related to logging activities in the study basins. Logged and forested areas w...

Full description

Saved in:
Bibliographic Details
Published in:Geomorphology (Amsterdam, Netherlands) Netherlands), 2003, Vol.49 (1), p.109-124
Main Authors: Brardinoni, Francesco, Hassan, Marwan A, Slaymaker, H.Olav
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The impacts of logging activities on mass wasting were examined in five watersheds in the coastal mountains of British Columbia. Historical aerial photos were used to document mass wasting events, and their occurrence was related to logging activities in the study basins. Logged and forested areas were compared in terms of mass wasting magnitude and frequency, with reference to site characteristics. The recovery time of the landscape after logging was assessed. Bedrock type and basin physiography had no identifiable effect on mass wasting frequency and magnitude. Mass wasting failure was primarily controlled by slope gradient. Basin vulnerability increased, following clearcutting relative to forested areas, in that mass wasting was initiated on gentler slopes. The volume of sediment produced from logged slopes is of the same order as that from forested areas, which are steeper by as much as 10°. In both logged and forested areas, the size distribution of mass wasting events follows an exponential distribution. However, the variability in mass wasting size in forested areas is much higher than that obtained for logged areas. The recovery time after forest harvesting is over 20 years, which confirms published estimates based on vegetation reestablishment. Continuous disturbance of the basin, however, may extend the recovery time for the whole basin well beyond 20 years.
ISSN:0169-555X
1872-695X
DOI:10.1016/S0169-555X(02)00166-6