Loading…
A Regional Atmospheric Fate and Transport Model for Atrazine. 2. Evaluation
The Community Multiscale Air Quality (CMAQ) modeling system has been adapted to simulate the regional fate and transport of atrazine. Model modifications and simulations spanning April to mid-July 1995 are described in a previous paper. CMAQ results for atrazine concentrations in air and rainfall ar...
Saved in:
Published in: | Environmental science & technology 2002-11, Vol.36 (21), p.4593-4599 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The Community Multiscale Air Quality (CMAQ) modeling system has been adapted to simulate the regional fate and transport of atrazine. Model modifications and simulations spanning April to mid-July 1995 are described in a previous paper. CMAQ results for atrazine concentrations in air and rainfall are evaluated against field observations taken along the Mississippi River and the shores of Lake Michigan in 1995. CMAQ results agree within 10% of published annual wet deposition load estimates for Lake Michigan and predicted annual dry deposition lies within published error bounds. Comparisons of weekly observed and predicted air and rainfall concentrations along the Mississippi River yield order-of-magnitude differences. Precipitation weighting of concentrations in rainfall good agreement for seasonal time frames. Weekly ambient gas form concentrations tend to be overpredicted by the CMAQ and semivolatile particulate fractions are underpredicted. Uncertainty in CMAQ predictions of air and rainfall concentrations for atrazine appear to derive primarily from uncertainty in emissions estimates, simulated precipitation, and spatial scale. |
---|---|
ISSN: | 0013-936X 1520-5851 |
DOI: | 10.1021/es011372q |