Loading…
High Levels of Airborne Ultrafine and Fine Particulate Matter in Indoor Ice Arenas
The high prevalence of airway dysfunction among ice arena athletes may be related to rink air exposure; in particular, high concentrations of ultrafine and fine particulate matter (0.02-1.0 µm diameter, PM 1) from ice resurfacing machines may enhance airway inflammation and hyperreactivity. The purp...
Saved in:
Published in: | Inhalation toxicology 2003-03, Vol.15 (3), p.237-250 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The high prevalence of airway dysfunction among ice arena athletes may be related to rink air exposure; in particular, high concentrations of ultrafine and fine particulate matter (0.02-1.0 µm diameter, PM 1) from ice resurfacing machines may enhance airway inflammation and hyperreactivity. The purpose of this study was to identify levels of PM 1 emitted from ice resurfacing machines used in indoor ice arenas, and to compare [PM 1] pre- and post-resurfacing to each other and to outdoor [PM 1] . Multiple one Hz measurements were recorded on 28 different days as 15-s mean of PM 1 ·cm -3 for 2 min at 1-1.5 m "above ice" in 10 rinks pre- and post-resurfacing, with measured airborne PM 1 outside each rink to be used individual rink references. Rink PM 1 ·cm -3 was ~30 times greater than PM 1 ·cm -3 outside the respective rinks (p < .05). Rink values were 104.2 ± 59.3 × 10 3 PM 1 ·cm -3 during prime usage, compared to outdoor values of 3.8 ± 2.5 × 10 3 PM 1 ·cm -3. Ice resurfacing increased PM 1 ·cm -3 4-fold (p < .05). No difference in PM 1 emissions between gasoline and propane powered resurfacing machines was identified. The rate of PM 1 dissipation after resurfacing was highly variable between rinks and probably dependent upon rink ventilation and resurfacing machine engine efficiency. Gas-powered edging increased PM 1 ·cm -3 18-fold and 158-fold versus pre-edging rink and outdoor values, respectively. We conclude that the primary source of airborne indoor rink PM 1 is internal combustion ice-resurfacing machines and that this poor air quality may be causal to the unique and high prevalence of airway dysfunction in ice arena athletes. |
---|---|
ISSN: | 0895-8378 1091-7691 |
DOI: | 10.1080/08958370304502 |