Loading…
Numerical modeling of 3D fully nonlinear potential periodic waves
A simple and exact numerical scheme for long-term simulations of 3D potential fully nonlinear periodic gravity waves is suggested. The scheme is based on the surface-following nonorthogonal curvilinear coordinate system. Velocity potential is represented as a sum of analytical and nonlinear componen...
Saved in:
Published in: | Ocean dynamics 2014-10, Vol.64 (10), p.1469-1486 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A simple and exact numerical scheme for long-term simulations of 3D potential fully nonlinear periodic gravity waves is suggested. The scheme is based on the surface-following nonorthogonal curvilinear coordinate system. Velocity potential is represented as a sum of analytical and nonlinear components. The Poisson equation for the nonlinear component of velocity potential is solved iteratively. Fourier transform method, the second-order accuracy approximation of vertical derivatives on a stretched vertical grid and the fourth-order Runge–Kutta time stepping are used. The scheme is validated by simulation of steep Stokes waves. A one-processor version of the model for PC allows us to simulate evolution of a wave field with thousands degrees of freedom for hundreds of wave periods. The scheme is designed for investigation of nonlinear 2D surface waves, generation of extreme waves, and direct calculations of nonlinear interactions. |
---|---|
ISSN: | 1616-7341 1616-7228 |
DOI: | 10.1007/s10236-014-0755-0 |