Loading…

Temporal variations in some plant and soil P pools in two pasture soils of widely different P fertility status

Temporal variations in plant production, plant P and some soil P (and N) pools were followed over 21 months in two New Zealand pasture soils of widely different P fertility status. Plant growth rates, and herbage composition at the high-fertility site, were closely linked to soil water use, with gro...

Full description

Saved in:
Bibliographic Details
Published in:Plant and soil 1991-04, Vol.132 (2), p.219-232
Main Authors: Tate, K.R. (Land Resources DSIR, Lower Hutt (New Zealand)), Speir, T.W, Ross, D.J, Parfitt, R.L, Whale, K.N, Cowling, J.C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Temporal variations in plant production, plant P and some soil P (and N) pools were followed over 21 months in two New Zealand pasture soils of widely different P fertility status. Plant growth rates, and herbage composition at the high-fertility site, were closely linked to soil water use, with growth rates falling when soil water deficits exceeded 60 mm. Herbage P concentrations reflected P fertility, and varied with season, being generally higher in winter and lower in summer. A similar temporal pattern was also observed for labile organic P (NaHCO₃-extractable P₀) in both soils. In the low-fertility soil in spring, net mineralization was especially strong, but from early winter net immobilization occurred. Surprisingly, Olsen P also changed temporally in the high-fertility soil. The microbial biomass remained fairly constant throughout the year, whereas the P content of the biomass varied seasonally. Although microbial biomass was not a useful index of soil fertility, highest microbial P₀ contents coincided with periods of maximum labile P₀ mineralization, when herbage production was also at a peak. Net N-mineralization in the low-fertility soil, in contrast to the high-fertility soil, was low but varied seasonally, under standardised incubation conditions. Soil P and N dynamics were apparently synchronised in the low-fertility soil through soil microbial processes, with mineral N being negatively correlated with microbial P₀ in samples collected two months later. The results of this investigation suggest that the demands of rapid and sustained pasture growth in spring and early summer can best be met by maximising the build-up of organic matter during the preceding autumn and winter. This practice could help to alleviate the common problem of feed shortage in North Island hill country pastures in late winter-early spring.
ISSN:0032-079X
1573-5036
DOI:10.1007/BF00010403