Loading…

Self-Healing Polyurethanes with Shape Recovery

Two new thermoresponsive self‐healing polyurethanes (1DA1T and 1.5DA1T) based on the Diels–Alder (DA) reaction between furan and maleimide moieties are developed that use the shape‐memory effect to bring crack faces into intimate contact such that healing can take place. Unlike other self‐healing po...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials 2014-09, Vol.24 (33), p.5261-5268
Main Authors: Heo, Yunseon, Sodano, Henry A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Two new thermoresponsive self‐healing polyurethanes (1DA1T and 1.5DA1T) based on the Diels–Alder (DA) reaction between furan and maleimide moieties are developed that use the shape‐memory effect to bring crack faces into intimate contact such that healing can take place. Unlike other self‐healing polymers, these polymers do not require external forces to close cracks but rather they use the shape‐memory effect to autonomously close the crack. Both polyurethanes have a stable polymer structure and comparable mechanical properties to commercial epoxies. A differential scanning calorimeter is employed to check the glass transition temperature of the polymers as well as the DA and retro‐DA (rDA) reaction temperatures. These DA and rDA reactions are confirmed with variable‐temperature proton nuclear magnetic resonance. Healing efficiency is calculated using a measurement of the failure load from compact tension testing. The results show that the shape‐memory effect can replace external forces to close two crack surfaces and the DA reaction can be repeatedly employed to heal the cracks. Thermo‐responsive self‐healing poly­urethanes that can be healed repeatedly without the application of external forces are developed. Instead, these polymers use the shape‐memory effect to autonomously bring the two crack surfaces together during the healing process.
ISSN:1616-301X
1616-3028
DOI:10.1002/adfm.201400299