Loading…
Discovering New Agents Active against Methicillin-Resistant Staphylococcus aureus with Ligand-Based Approaches
To discover new agents active against methicillin-resistant Staphylococcus aureus (MRSA), in silico models derived from 5451 cell-based anti-MRSA assay data were developed using four machine learning methods, including naïve Bayesian, support vector machine (SVM), recursive partitioning (RP), and k...
Saved in:
Published in: | Journal of chemical information and modeling 2014-11, Vol.54 (11), p.3186-3197 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | To discover new agents active against methicillin-resistant Staphylococcus aureus (MRSA), in silico models derived from 5451 cell-based anti-MRSA assay data were developed using four machine learning methods, including naïve Bayesian, support vector machine (SVM), recursive partitioning (RP), and k-nearest neighbors (kNN). A total of 876 models have been constructed based on physicochemical descriptors and fingerprints. The overall predictive accuracies of the best models exceeded 80% for both training and test sets. The best model was employed for the virtual screening of anti-MRSA compounds, which were then validated by a cell-based assay using the broth microdilution method with three types of highly resistant MRSA strains (ST239, ST5, and 252). A total of 12 new anti-MRSA agents were confirmed, which had MIC values ranging from 4 to 64 mg/L. This work proves the capacity of combined multiple ligand-based approaches for the discovery of new agents active against MRSA with cell-based assays. We think this work may inspire other lead identification processes when cell-based assay data are available. |
---|---|
ISSN: | 1549-9596 1549-960X |
DOI: | 10.1021/ci500253q |