Loading…
Optimising the production of energy from coblended food waste and biosolids using batch reactor studies
Energy production from a coblended mixture of biosolids and food waste was optimised for hydrogen and methane production. Four different blends were prepared by varying the carbohydrate : protein (carb : pro) ratios. The biosolids contained a low carbohydrate fraction and so was not suitable for hyd...
Saved in:
Published in: | Water and environment journal : WEJ 2014-12, Vol.28 (4), p.483-489 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Energy production from a coblended mixture of biosolids and food waste was optimised for hydrogen and methane production. Four different blends were prepared by varying the carbohydrate : protein (carb : pro) ratios. The biosolids contained a low carbohydrate fraction and so was not suitable for hydrogen production when used alone. However coblending this waste with a carbohydrate‐enriched food waste produced a greater hydrogen yield, making this option viable. Batch studies showed that the optimised mix had a biosolids concentration of 25.7% (w/w). The largest hydrogen yield of 198.5 mL/gVSremoved was observed when the carb : pro was 2.78, and this was threefold higher than the other carb : pro ratios evaluated in this study. The digestate recovered after hydrogen recovery had a C : N of 17.5, which is in the ideal range for methane production. The biochemical methane potential test showed a methane yield of 239 mL/gVSremoved, and the total volatile solids destruction following two‐phase hydrogen and methane production was 93%. |
---|---|
ISSN: | 1747-6585 1747-6593 |
DOI: | 10.1111/wej.12060 |