Loading…
Modification of the Euler quadrature formula for functions with a boundary-layer component
The Euler quadrature formula for the numerical integration of functions with a boundary-layer component on a uniform grid is investigated. If the function under study has a rapidly growing component, the error can be significant. A uniformly accurate quadrature formula is constructed by modifying th...
Saved in:
Published in: | Computational mathematics and mathematical physics 2014-10, Vol.54 (10), p.1489-1498 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The Euler quadrature formula for the numerical integration of functions with a boundary-layer component on a uniform grid is investigated. If the function under study has a rapidly growing component, the error can be significant. A uniformly accurate quadrature formula is constructed by modifying the Hermite interpolation formula so that the resulting one is exact for the boundary-layer component. An analogue of the Euler formula that is exact for the boundary-layer component is constructed. It is proved that the resulting composite quadrature formula is third-order accurate in space uniformly with respect to the boundary-layer component and its derivatives. |
---|---|
ISSN: | 0965-5425 1555-6662 |
DOI: | 10.1134/S0965542514100078 |