Loading…
Modification of the Euler quadrature formula for functions with a boundary-layer component
The Euler quadrature formula for the numerical integration of functions with a boundary-layer component on a uniform grid is investigated. If the function under study has a rapidly growing component, the error can be significant. A uniformly accurate quadrature formula is constructed by modifying th...
Saved in:
Published in: | Computational mathematics and mathematical physics 2014-10, Vol.54 (10), p.1489-1498 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c301t-8728ab1ac452be32e031e8f121a421dc4fdd872ec6ef0650e959fd9d201e11bd3 |
container_end_page | 1498 |
container_issue | 10 |
container_start_page | 1489 |
container_title | Computational mathematics and mathematical physics |
container_volume | 54 |
creator | Zadorin, A. I. |
description | The Euler quadrature formula for the numerical integration of functions with a boundary-layer component on a uniform grid is investigated. If the function under study has a rapidly growing component, the error can be significant. A uniformly accurate quadrature formula is constructed by modifying the Hermite interpolation formula so that the resulting one is exact for the boundary-layer component. An analogue of the Euler formula that is exact for the boundary-layer component is constructed. It is proved that the resulting composite quadrature formula is third-order accurate in space uniformly with respect to the boundary-layer component and its derivatives. |
doi_str_mv | 10.1134/S0965542514100078 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1629341760</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3466463661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-8728ab1ac452be32e031e8f121a421dc4fdd872ec6ef0650e959fd9d201e11bd3</originalsourceid><addsrcrecordid>eNp1kD9PwzAUxC0EEqXwAdgssbAE_JzYTUZU8U8qYgAWlsixn2mqNG7tWKjfHkdlQCCmG-53p_eOkHNgVwB5cf3CKilEwQUUwBiblQdkAkKITErJD8lktLPRPyYnIawYA1mV-YS8PznT2laroXU9dZYOS6S3sUNPt1EZr4bokVrn17FTo1Ibez3CgX62w5Iq2rjYG-V3Wad2KabdeuN67IdTcmRVF_DsW6fk7e72df6QLZ7vH-c3i0znDIasnPFSNaB0IXiDOUeWA5YWOKiCg9GFNSYxqCVaJgXDSlTWVIYzQIDG5FNyue_deLeNGIZ63QaNXad6dDHUIHmVFzCTLKEXv9CVi75P1yUKinyWhuOJgj2lvQvBo603vl2nD2tg9bh2_WftlOH7TEhs_4H-R_O_oS8me4Fh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1614370782</pqid></control><display><type>article</type><title>Modification of the Euler quadrature formula for functions with a boundary-layer component</title><source>ABI/INFORM Global</source><source>Springer Nature</source><creator>Zadorin, A. I.</creator><creatorcontrib>Zadorin, A. I.</creatorcontrib><description>The Euler quadrature formula for the numerical integration of functions with a boundary-layer component on a uniform grid is investigated. If the function under study has a rapidly growing component, the error can be significant. A uniformly accurate quadrature formula is constructed by modifying the Hermite interpolation formula so that the resulting one is exact for the boundary-layer component. An analogue of the Euler formula that is exact for the boundary-layer component is constructed. It is proved that the resulting composite quadrature formula is third-order accurate in space uniformly with respect to the boundary-layer component and its derivatives.</description><identifier>ISSN: 0965-5425</identifier><identifier>EISSN: 1555-6662</identifier><identifier>DOI: 10.1134/S0965542514100078</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Boundaries ; Computational mathematics ; Computational Mathematics and Numerical Analysis ; Construction ; Derivatives ; Error analysis ; Eulers equations ; Interpolation ; Mathematical analysis ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Polynomials ; Quadratures ; Studies</subject><ispartof>Computational mathematics and mathematical physics, 2014-10, Vol.54 (10), p.1489-1498</ispartof><rights>Pleiades Publishing, Ltd. 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c301t-8728ab1ac452be32e031e8f121a421dc4fdd872ec6ef0650e959fd9d201e11bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1614370782?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,36061,44363</link.rule.ids></links><search><creatorcontrib>Zadorin, A. I.</creatorcontrib><title>Modification of the Euler quadrature formula for functions with a boundary-layer component</title><title>Computational mathematics and mathematical physics</title><addtitle>Comput. Math. and Math. Phys</addtitle><description>The Euler quadrature formula for the numerical integration of functions with a boundary-layer component on a uniform grid is investigated. If the function under study has a rapidly growing component, the error can be significant. A uniformly accurate quadrature formula is constructed by modifying the Hermite interpolation formula so that the resulting one is exact for the boundary-layer component. An analogue of the Euler formula that is exact for the boundary-layer component is constructed. It is proved that the resulting composite quadrature formula is third-order accurate in space uniformly with respect to the boundary-layer component and its derivatives.</description><subject>Boundaries</subject><subject>Computational mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Construction</subject><subject>Derivatives</subject><subject>Error analysis</subject><subject>Eulers equations</subject><subject>Interpolation</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Polynomials</subject><subject>Quadratures</subject><subject>Studies</subject><issn>0965-5425</issn><issn>1555-6662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kD9PwzAUxC0EEqXwAdgssbAE_JzYTUZU8U8qYgAWlsixn2mqNG7tWKjfHkdlQCCmG-53p_eOkHNgVwB5cf3CKilEwQUUwBiblQdkAkKITErJD8lktLPRPyYnIawYA1mV-YS8PznT2laroXU9dZYOS6S3sUNPt1EZr4bokVrn17FTo1Ibez3CgX62w5Iq2rjYG-V3Wad2KabdeuN67IdTcmRVF_DsW6fk7e72df6QLZ7vH-c3i0znDIasnPFSNaB0IXiDOUeWA5YWOKiCg9GFNSYxqCVaJgXDSlTWVIYzQIDG5FNyue_deLeNGIZ63QaNXad6dDHUIHmVFzCTLKEXv9CVi75P1yUKinyWhuOJgj2lvQvBo603vl2nD2tg9bh2_WftlOH7TEhs_4H-R_O_oS8me4Fh</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Zadorin, A. I.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20141001</creationdate><title>Modification of the Euler quadrature formula for functions with a boundary-layer component</title><author>Zadorin, A. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-8728ab1ac452be32e031e8f121a421dc4fdd872ec6ef0650e959fd9d201e11bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Boundaries</topic><topic>Computational mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Construction</topic><topic>Derivatives</topic><topic>Error analysis</topic><topic>Eulers equations</topic><topic>Interpolation</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Polynomials</topic><topic>Quadratures</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zadorin, A. I.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Computational mathematics and mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zadorin, A. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modification of the Euler quadrature formula for functions with a boundary-layer component</atitle><jtitle>Computational mathematics and mathematical physics</jtitle><stitle>Comput. Math. and Math. Phys</stitle><date>2014-10-01</date><risdate>2014</risdate><volume>54</volume><issue>10</issue><spage>1489</spage><epage>1498</epage><pages>1489-1498</pages><issn>0965-5425</issn><eissn>1555-6662</eissn><abstract>The Euler quadrature formula for the numerical integration of functions with a boundary-layer component on a uniform grid is investigated. If the function under study has a rapidly growing component, the error can be significant. A uniformly accurate quadrature formula is constructed by modifying the Hermite interpolation formula so that the resulting one is exact for the boundary-layer component. An analogue of the Euler formula that is exact for the boundary-layer component is constructed. It is proved that the resulting composite quadrature formula is third-order accurate in space uniformly with respect to the boundary-layer component and its derivatives.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0965542514100078</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0965-5425 |
ispartof | Computational mathematics and mathematical physics, 2014-10, Vol.54 (10), p.1489-1498 |
issn | 0965-5425 1555-6662 |
language | eng |
recordid | cdi_proquest_miscellaneous_1629341760 |
source | ABI/INFORM Global; Springer Nature |
subjects | Boundaries Computational mathematics Computational Mathematics and Numerical Analysis Construction Derivatives Error analysis Eulers equations Interpolation Mathematical analysis Mathematical models Mathematics Mathematics and Statistics Polynomials Quadratures Studies |
title | Modification of the Euler quadrature formula for functions with a boundary-layer component |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A10%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modification%20of%20the%20Euler%20quadrature%20formula%20for%20functions%20with%20a%20boundary-layer%20component&rft.jtitle=Computational%20mathematics%20and%20mathematical%20physics&rft.au=Zadorin,%20A.%20I.&rft.date=2014-10-01&rft.volume=54&rft.issue=10&rft.spage=1489&rft.epage=1498&rft.pages=1489-1498&rft.issn=0965-5425&rft.eissn=1555-6662&rft_id=info:doi/10.1134/S0965542514100078&rft_dat=%3Cproquest_cross%3E3466463661%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c301t-8728ab1ac452be32e031e8f121a421dc4fdd872ec6ef0650e959fd9d201e11bd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1614370782&rft_id=info:pmid/&rfr_iscdi=true |