Loading…
k-core percolation on multiplex networks
We generalize the theory of k-core percolation on complex networks to k-core percolation on multiplex networks, where k≡(k(1),k(2),...,k(M)). Multiplex networks can be defined as networks with vertices of one kind but M different types of edges, representing different types of interactions. For such...
Saved in:
Published in: | Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2014-09, Vol.90 (3), p.032816-032816, Article 032816 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We generalize the theory of k-core percolation on complex networks to k-core percolation on multiplex networks, where k≡(k(1),k(2),...,k(M)). Multiplex networks can be defined as networks with vertices of one kind but M different types of edges, representing different types of interactions. For such networks, the k-core is defined as the largest subgraph in which each vertex has at least k(i) edges of each type, i=1,2,...,M. We derive self-consistency equations to obtain the birth points of the k-cores and their relative sizes for uncorrelated multiplex networks with an arbitrary degree distribution. To clarify our general results, we consider in detail multiplex networks with edges of two types and solve the equations in the particular case of Erdős-Rényi and scale-free multiplex networks. We find hybrid phase transitions at the emergence points of k-cores except the (1,1)-core for which the transition is continuous. We apply the k-core decomposition algorithm to air-transportation multiplex networks, composed of two layers, and obtain the size of (k(1),k(2))-cores. |
---|---|
ISSN: | 1539-3755 1550-2376 |
DOI: | 10.1103/PhysRevE.90.032816 |