Loading…
Activation of protein kinase C by oleic acid. Determination and analysis of inhibition by detergent micelles and physiologic membranes: requirement for free oleate
Sodium oleate is able to activate soluble protein kinase C (Murakami, K., Chan, S. Y., and Routtenberg, A. (1986) J. Biol. Chem. 261, 15424-15429) but is unable to activate membrane-bound enzyme (El Touny, S., Khan, W., and Hannun, Y. (1990) J. Biol. Chem. 265, 16437-16443). Because physiologic inte...
Saved in:
Published in: | The Journal of biological chemistry 1992-02, Vol.267 (6), p.3605-3612 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Sodium oleate is able to activate soluble protein kinase C (Murakami, K., Chan, S. Y., and Routtenberg, A. (1986) J. Biol.
Chem. 261, 15424-15429) but is unable to activate membrane-bound enzyme (El Touny, S., Khan, W., and Hannun, Y. (1990) J.
Biol. Chem. 265, 16437-16443). Because physiologic interactions of fatty acids with protein kinase C occur in the presence
of membranes, the following studies were conducted to evaluate the effects of surfaces (detergent micelles or platelet membranes)
on the activation of protein kinase C by oleate. At concentrations at or above the critical micellar concentration (CMC) of
Triton X-100, oleate was present primarily in Triton X-100/oleate-mixed micelles, as determined by gel permeation chromatography
and equilibrium dialysis binding studies. At concentrations slightly below the CMC for Triton X-100, the presence of oleate
caused the formation of a limited number of mixed micelles. Studies of the dose-dependent activation of purified platelet
protein kinase C by sodium oleate in the presence of different concentrations of Triton X-100 indicated that only unbound
oleate was able to activate protein kinase C. Platelet protein kinase C was resolved into two major isoenzymes (types II (beta)
and III (alpha)) which displayed nearly identical interaction with oleate. Activation of protein kinase C by oleate in a physiologic
setting employing platelet substrates and endogenous platelet protein kinase C was investigated. Oleate potently activated
protein kinase C in the cytosolic compartment. In platelet homogenates as well as in a reconstituted platelet cytosol and
membrane system, the dose dependence of protein kinase C on oleate showed a significant shift to the right. Approximately
30% of oleate was associated with platelet cytosol and 70% was associated with platelet membranes. Partitioning of oleate
into the two platelet compartments showed little change with pH, temperature, or duration of incubation. When corrected for
free oleate concentration, activation of protein kinase C by oleate showed identical dose dependence in cytosol and homogenate.
Arachidonate, a potential physiologic activator of protein kinase C, showed similar behavior as oleate although only 30% of
arachidonate partitioned into platelet membranes with the majority of arachidonate (70%) remaining in the cytosolic fraction. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1016/S0021-9258(19)50567-1 |