Loading…
Cleavage efficiences of model substrates for ribonuclease P from Escherichia coli and Thermus thermophilus
We compared cleavage efficiencies of mono-molecular and bipartite model RNAs as substrates for RNase P RNAs (M1 RNAs) and holoenzymes from E. coli and Thermus thermophilus , an extreme thermophilic eubacterium. Acceptor stem and T arm of pre-tRNA substrates are essential recognition elements for bot...
Saved in:
Published in: | Nucleic acids research 1992, Vol.20 (22), p.5963-5970 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We compared cleavage efficiencies of mono-molecular and bipartite model RNAs as substrates for RNase P RNAs (M1 RNAs) and holoenzymes from E. coli and Thermus thermophilus , an extreme thermophilic eubacterium. Acceptor stem and T arm of pre-tRNA substrates are essential recognition elements for both enzymes. Impairing coaxial stacking of acceptor and T stems and omitting the T loop led to reduced cleavage efficiencies. Small model substrates were less efficiently cleaved by M1 RNA and RNase P from T. thermophilus than by the corresponding E. coli activities. Competition kinetics and gel retardation studies showed that truncated tRNA substrates are less tightly bound by RNase P and M1 RNA from both bacteria. |
---|---|
ISSN: | 0305-1048 1362-4962 |