Loading…

An investigation on formation and electrochemical capacitance of anodized titania nanotubes

•We study the titania nanotubes formation in fluoride containing electrolyte.•Nanoscale pits serves as pore integration centre that finally creating nanotube.•Titania nanotubes offer high specific surface area for charge storage activity.•Unsymmetrical CV shape is characteristic of n-type behavior o...

Full description

Saved in:
Bibliographic Details
Published in:Applied surface science 2013-09, Vol.280, p.962-966
Main Authors: Endut, Zulkarnain, Hamdi, Mohd, Basirun, Wan Jeffrey
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c369t-c31a5d0aea9c3ed954990b1a7a019e4b730504a205203c98f9607d414536e2463
cites cdi_FETCH-LOGICAL-c369t-c31a5d0aea9c3ed954990b1a7a019e4b730504a205203c98f9607d414536e2463
container_end_page 966
container_issue
container_start_page 962
container_title Applied surface science
container_volume 280
creator Endut, Zulkarnain
Hamdi, Mohd
Basirun, Wan Jeffrey
description •We study the titania nanotubes formation in fluoride containing electrolyte.•Nanoscale pits serves as pore integration centre that finally creating nanotube.•Titania nanotubes offer high specific surface area for charge storage activity.•Unsymmetrical CV shape is characteristic of n-type behavior of titania nanotubes. The mechanism of titania nanotubes formation and growth during anodization of titanium in NH4F/ethylene glycol electrolyte at 45V applied voltage was investigated using field emission scanning electron microscopy (FESEM). The initial stage of the anodization occurs with the formation of a compact oxide layer with nanoscale pits. With the increase of anodization time, the pits transform to larger and deeper pores due to the integration of the smaller and larger pores, finally creating self-ordered titania nanotubes. The porous structure increases electrochemical capacitance from 18.3μFcm−2 for 10s anodization time to 49.9μFcm−2 for 1800s anodization time. The cyclic voltammetry (CV) transforms from a near symmetry rectangular shape to x-axis symmetry with higher current density as the anodization time increases due to increased specific surface area of the nanotubular structure. The larger CV size at more cathodic regions is characteristics of the n-type behaviour of titania materials, as also shown in the Mott–Schottky analysis.
doi_str_mv 10.1016/j.apsusc.2013.05.118
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642216983</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0169433213010568</els_id><sourcerecordid>1642216983</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-c31a5d0aea9c3ed954990b1a7a019e4b730504a205203c98f9607d414536e2463</originalsourceid><addsrcrecordid>eNp9kE1r3DAQhkVpoNsk_6AHXwq9rDP6sq1LIISkDQRySU45iFl53GrxWhvJG2h_fWdxyDEgJDR6RsP7CPFNQi1BNhfbGvflUEKtQOoabC1l90msZNfqtbWd-SxWjLm10Vp9EV9L2QJIxa8r8Xw1VXF6pTLH3zjHNFW8hpR3ywWnvqKRwpxT-EO7GHCsAu4xxBmnQFUaGEl9_Ed9NR9rEauJK_NhQ-VMnAw4Fjp_O0_F0-3N4_Wv9f3Dz7vrq_t10I2beZdoe0BCFzT1zhrnYCOxRZCOzKbVYMGgAqtAB9cNroG2N9JY3ZAyjT4VP5Z_9zm9HDiK38USaBxxonQoXjZGKc7faUbNgoacSsk0-H2OO8x_vQR_dOm3fnHpjy49WM8uue372wQsrGDIHD6W917VWqsNGOYuF4447muk7EuIxKL6mFmi71P8eNB_PAKMbw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1642216983</pqid></control><display><type>article</type><title>An investigation on formation and electrochemical capacitance of anodized titania nanotubes</title><source>ScienceDirect Journals</source><creator>Endut, Zulkarnain ; Hamdi, Mohd ; Basirun, Wan Jeffrey</creator><creatorcontrib>Endut, Zulkarnain ; Hamdi, Mohd ; Basirun, Wan Jeffrey</creatorcontrib><description>•We study the titania nanotubes formation in fluoride containing electrolyte.•Nanoscale pits serves as pore integration centre that finally creating nanotube.•Titania nanotubes offer high specific surface area for charge storage activity.•Unsymmetrical CV shape is characteristic of n-type behavior of titania nanotubes. The mechanism of titania nanotubes formation and growth during anodization of titanium in NH4F/ethylene glycol electrolyte at 45V applied voltage was investigated using field emission scanning electron microscopy (FESEM). The initial stage of the anodization occurs with the formation of a compact oxide layer with nanoscale pits. With the increase of anodization time, the pits transform to larger and deeper pores due to the integration of the smaller and larger pores, finally creating self-ordered titania nanotubes. The porous structure increases electrochemical capacitance from 18.3μFcm−2 for 10s anodization time to 49.9μFcm−2 for 1800s anodization time. The cyclic voltammetry (CV) transforms from a near symmetry rectangular shape to x-axis symmetry with higher current density as the anodization time increases due to increased specific surface area of the nanotubular structure. The larger CV size at more cathodic regions is characteristics of the n-type behaviour of titania materials, as also shown in the Mott–Schottky analysis.</description><identifier>ISSN: 0169-4332</identifier><identifier>EISSN: 1873-5584</identifier><identifier>DOI: 10.1016/j.apsusc.2013.05.118</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Anodizing ; Capacitance ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Electrochemical capacitance ; Exact sciences and technology ; Formations ; Nanostructure ; Nanotubes ; Nanotubes formation ; Physics ; Pits ; Symmetry ; Titania nanotubes ; Titanium dioxide</subject><ispartof>Applied surface science, 2013-09, Vol.280, p.962-966</ispartof><rights>2013 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-c31a5d0aea9c3ed954990b1a7a019e4b730504a205203c98f9607d414536e2463</citedby><cites>FETCH-LOGICAL-c369t-c31a5d0aea9c3ed954990b1a7a019e4b730504a205203c98f9607d414536e2463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27553404$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Endut, Zulkarnain</creatorcontrib><creatorcontrib>Hamdi, Mohd</creatorcontrib><creatorcontrib>Basirun, Wan Jeffrey</creatorcontrib><title>An investigation on formation and electrochemical capacitance of anodized titania nanotubes</title><title>Applied surface science</title><description>•We study the titania nanotubes formation in fluoride containing electrolyte.•Nanoscale pits serves as pore integration centre that finally creating nanotube.•Titania nanotubes offer high specific surface area for charge storage activity.•Unsymmetrical CV shape is characteristic of n-type behavior of titania nanotubes. The mechanism of titania nanotubes formation and growth during anodization of titanium in NH4F/ethylene glycol electrolyte at 45V applied voltage was investigated using field emission scanning electron microscopy (FESEM). The initial stage of the anodization occurs with the formation of a compact oxide layer with nanoscale pits. With the increase of anodization time, the pits transform to larger and deeper pores due to the integration of the smaller and larger pores, finally creating self-ordered titania nanotubes. The porous structure increases electrochemical capacitance from 18.3μFcm−2 for 10s anodization time to 49.9μFcm−2 for 1800s anodization time. The cyclic voltammetry (CV) transforms from a near symmetry rectangular shape to x-axis symmetry with higher current density as the anodization time increases due to increased specific surface area of the nanotubular structure. The larger CV size at more cathodic regions is characteristics of the n-type behaviour of titania materials, as also shown in the Mott–Schottky analysis.</description><subject>Anodizing</subject><subject>Capacitance</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electrochemical capacitance</subject><subject>Exact sciences and technology</subject><subject>Formations</subject><subject>Nanostructure</subject><subject>Nanotubes</subject><subject>Nanotubes formation</subject><subject>Physics</subject><subject>Pits</subject><subject>Symmetry</subject><subject>Titania nanotubes</subject><subject>Titanium dioxide</subject><issn>0169-4332</issn><issn>1873-5584</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kE1r3DAQhkVpoNsk_6AHXwq9rDP6sq1LIISkDQRySU45iFl53GrxWhvJG2h_fWdxyDEgJDR6RsP7CPFNQi1BNhfbGvflUEKtQOoabC1l90msZNfqtbWd-SxWjLm10Vp9EV9L2QJIxa8r8Xw1VXF6pTLH3zjHNFW8hpR3ywWnvqKRwpxT-EO7GHCsAu4xxBmnQFUaGEl9_Ed9NR9rEauJK_NhQ-VMnAw4Fjp_O0_F0-3N4_Wv9f3Dz7vrq_t10I2beZdoe0BCFzT1zhrnYCOxRZCOzKbVYMGgAqtAB9cNroG2N9JY3ZAyjT4VP5Z_9zm9HDiK38USaBxxonQoXjZGKc7faUbNgoacSsk0-H2OO8x_vQR_dOm3fnHpjy49WM8uue372wQsrGDIHD6W917VWqsNGOYuF4447muk7EuIxKL6mFmi71P8eNB_PAKMbw</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Endut, Zulkarnain</creator><creator>Hamdi, Mohd</creator><creator>Basirun, Wan Jeffrey</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130901</creationdate><title>An investigation on formation and electrochemical capacitance of anodized titania nanotubes</title><author>Endut, Zulkarnain ; Hamdi, Mohd ; Basirun, Wan Jeffrey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-c31a5d0aea9c3ed954990b1a7a019e4b730504a205203c98f9607d414536e2463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Anodizing</topic><topic>Capacitance</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electrochemical capacitance</topic><topic>Exact sciences and technology</topic><topic>Formations</topic><topic>Nanostructure</topic><topic>Nanotubes</topic><topic>Nanotubes formation</topic><topic>Physics</topic><topic>Pits</topic><topic>Symmetry</topic><topic>Titania nanotubes</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Endut, Zulkarnain</creatorcontrib><creatorcontrib>Hamdi, Mohd</creatorcontrib><creatorcontrib>Basirun, Wan Jeffrey</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied surface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Endut, Zulkarnain</au><au>Hamdi, Mohd</au><au>Basirun, Wan Jeffrey</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An investigation on formation and electrochemical capacitance of anodized titania nanotubes</atitle><jtitle>Applied surface science</jtitle><date>2013-09-01</date><risdate>2013</risdate><volume>280</volume><spage>962</spage><epage>966</epage><pages>962-966</pages><issn>0169-4332</issn><eissn>1873-5584</eissn><abstract>•We study the titania nanotubes formation in fluoride containing electrolyte.•Nanoscale pits serves as pore integration centre that finally creating nanotube.•Titania nanotubes offer high specific surface area for charge storage activity.•Unsymmetrical CV shape is characteristic of n-type behavior of titania nanotubes. The mechanism of titania nanotubes formation and growth during anodization of titanium in NH4F/ethylene glycol electrolyte at 45V applied voltage was investigated using field emission scanning electron microscopy (FESEM). The initial stage of the anodization occurs with the formation of a compact oxide layer with nanoscale pits. With the increase of anodization time, the pits transform to larger and deeper pores due to the integration of the smaller and larger pores, finally creating self-ordered titania nanotubes. The porous structure increases electrochemical capacitance from 18.3μFcm−2 for 10s anodization time to 49.9μFcm−2 for 1800s anodization time. The cyclic voltammetry (CV) transforms from a near symmetry rectangular shape to x-axis symmetry with higher current density as the anodization time increases due to increased specific surface area of the nanotubular structure. The larger CV size at more cathodic regions is characteristics of the n-type behaviour of titania materials, as also shown in the Mott–Schottky analysis.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.apsusc.2013.05.118</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0169-4332
ispartof Applied surface science, 2013-09, Vol.280, p.962-966
issn 0169-4332
1873-5584
language eng
recordid cdi_proquest_miscellaneous_1642216983
source ScienceDirect Journals
subjects Anodizing
Capacitance
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Electrochemical capacitance
Exact sciences and technology
Formations
Nanostructure
Nanotubes
Nanotubes formation
Physics
Pits
Symmetry
Titania nanotubes
Titanium dioxide
title An investigation on formation and electrochemical capacitance of anodized titania nanotubes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T20%3A17%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20investigation%20on%20formation%20and%20electrochemical%20capacitance%20of%20anodized%20titania%20nanotubes&rft.jtitle=Applied%20surface%20science&rft.au=Endut,%20Zulkarnain&rft.date=2013-09-01&rft.volume=280&rft.spage=962&rft.epage=966&rft.pages=962-966&rft.issn=0169-4332&rft.eissn=1873-5584&rft_id=info:doi/10.1016/j.apsusc.2013.05.118&rft_dat=%3Cproquest_cross%3E1642216983%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c369t-c31a5d0aea9c3ed954990b1a7a019e4b730504a205203c98f9607d414536e2463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1642216983&rft_id=info:pmid/&rfr_iscdi=true