Loading…
An investigation on formation and electrochemical capacitance of anodized titania nanotubes
•We study the titania nanotubes formation in fluoride containing electrolyte.•Nanoscale pits serves as pore integration centre that finally creating nanotube.•Titania nanotubes offer high specific surface area for charge storage activity.•Unsymmetrical CV shape is characteristic of n-type behavior o...
Saved in:
Published in: | Applied surface science 2013-09, Vol.280, p.962-966 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c369t-c31a5d0aea9c3ed954990b1a7a019e4b730504a205203c98f9607d414536e2463 |
---|---|
cites | cdi_FETCH-LOGICAL-c369t-c31a5d0aea9c3ed954990b1a7a019e4b730504a205203c98f9607d414536e2463 |
container_end_page | 966 |
container_issue | |
container_start_page | 962 |
container_title | Applied surface science |
container_volume | 280 |
creator | Endut, Zulkarnain Hamdi, Mohd Basirun, Wan Jeffrey |
description | •We study the titania nanotubes formation in fluoride containing electrolyte.•Nanoscale pits serves as pore integration centre that finally creating nanotube.•Titania nanotubes offer high specific surface area for charge storage activity.•Unsymmetrical CV shape is characteristic of n-type behavior of titania nanotubes.
The mechanism of titania nanotubes formation and growth during anodization of titanium in NH4F/ethylene glycol electrolyte at 45V applied voltage was investigated using field emission scanning electron microscopy (FESEM). The initial stage of the anodization occurs with the formation of a compact oxide layer with nanoscale pits. With the increase of anodization time, the pits transform to larger and deeper pores due to the integration of the smaller and larger pores, finally creating self-ordered titania nanotubes. The porous structure increases electrochemical capacitance from 18.3μFcm−2 for 10s anodization time to 49.9μFcm−2 for 1800s anodization time. The cyclic voltammetry (CV) transforms from a near symmetry rectangular shape to x-axis symmetry with higher current density as the anodization time increases due to increased specific surface area of the nanotubular structure. The larger CV size at more cathodic regions is characteristics of the n-type behaviour of titania materials, as also shown in the Mott–Schottky analysis. |
doi_str_mv | 10.1016/j.apsusc.2013.05.118 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642216983</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0169433213010568</els_id><sourcerecordid>1642216983</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-c31a5d0aea9c3ed954990b1a7a019e4b730504a205203c98f9607d414536e2463</originalsourceid><addsrcrecordid>eNp9kE1r3DAQhkVpoNsk_6AHXwq9rDP6sq1LIISkDQRySU45iFl53GrxWhvJG2h_fWdxyDEgJDR6RsP7CPFNQi1BNhfbGvflUEKtQOoabC1l90msZNfqtbWd-SxWjLm10Vp9EV9L2QJIxa8r8Xw1VXF6pTLH3zjHNFW8hpR3ywWnvqKRwpxT-EO7GHCsAu4xxBmnQFUaGEl9_Ed9NR9rEauJK_NhQ-VMnAw4Fjp_O0_F0-3N4_Wv9f3Dz7vrq_t10I2beZdoe0BCFzT1zhrnYCOxRZCOzKbVYMGgAqtAB9cNroG2N9JY3ZAyjT4VP5Z_9zm9HDiK38USaBxxonQoXjZGKc7faUbNgoacSsk0-H2OO8x_vQR_dOm3fnHpjy49WM8uue372wQsrGDIHD6W917VWqsNGOYuF4447muk7EuIxKL6mFmi71P8eNB_PAKMbw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1642216983</pqid></control><display><type>article</type><title>An investigation on formation and electrochemical capacitance of anodized titania nanotubes</title><source>ScienceDirect Journals</source><creator>Endut, Zulkarnain ; Hamdi, Mohd ; Basirun, Wan Jeffrey</creator><creatorcontrib>Endut, Zulkarnain ; Hamdi, Mohd ; Basirun, Wan Jeffrey</creatorcontrib><description>•We study the titania nanotubes formation in fluoride containing electrolyte.•Nanoscale pits serves as pore integration centre that finally creating nanotube.•Titania nanotubes offer high specific surface area for charge storage activity.•Unsymmetrical CV shape is characteristic of n-type behavior of titania nanotubes.
The mechanism of titania nanotubes formation and growth during anodization of titanium in NH4F/ethylene glycol electrolyte at 45V applied voltage was investigated using field emission scanning electron microscopy (FESEM). The initial stage of the anodization occurs with the formation of a compact oxide layer with nanoscale pits. With the increase of anodization time, the pits transform to larger and deeper pores due to the integration of the smaller and larger pores, finally creating self-ordered titania nanotubes. The porous structure increases electrochemical capacitance from 18.3μFcm−2 for 10s anodization time to 49.9μFcm−2 for 1800s anodization time. The cyclic voltammetry (CV) transforms from a near symmetry rectangular shape to x-axis symmetry with higher current density as the anodization time increases due to increased specific surface area of the nanotubular structure. The larger CV size at more cathodic regions is characteristics of the n-type behaviour of titania materials, as also shown in the Mott–Schottky analysis.</description><identifier>ISSN: 0169-4332</identifier><identifier>EISSN: 1873-5584</identifier><identifier>DOI: 10.1016/j.apsusc.2013.05.118</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Anodizing ; Capacitance ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Electrochemical capacitance ; Exact sciences and technology ; Formations ; Nanostructure ; Nanotubes ; Nanotubes formation ; Physics ; Pits ; Symmetry ; Titania nanotubes ; Titanium dioxide</subject><ispartof>Applied surface science, 2013-09, Vol.280, p.962-966</ispartof><rights>2013 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-c31a5d0aea9c3ed954990b1a7a019e4b730504a205203c98f9607d414536e2463</citedby><cites>FETCH-LOGICAL-c369t-c31a5d0aea9c3ed954990b1a7a019e4b730504a205203c98f9607d414536e2463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27553404$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Endut, Zulkarnain</creatorcontrib><creatorcontrib>Hamdi, Mohd</creatorcontrib><creatorcontrib>Basirun, Wan Jeffrey</creatorcontrib><title>An investigation on formation and electrochemical capacitance of anodized titania nanotubes</title><title>Applied surface science</title><description>•We study the titania nanotubes formation in fluoride containing electrolyte.•Nanoscale pits serves as pore integration centre that finally creating nanotube.•Titania nanotubes offer high specific surface area for charge storage activity.•Unsymmetrical CV shape is characteristic of n-type behavior of titania nanotubes.
The mechanism of titania nanotubes formation and growth during anodization of titanium in NH4F/ethylene glycol electrolyte at 45V applied voltage was investigated using field emission scanning electron microscopy (FESEM). The initial stage of the anodization occurs with the formation of a compact oxide layer with nanoscale pits. With the increase of anodization time, the pits transform to larger and deeper pores due to the integration of the smaller and larger pores, finally creating self-ordered titania nanotubes. The porous structure increases electrochemical capacitance from 18.3μFcm−2 for 10s anodization time to 49.9μFcm−2 for 1800s anodization time. The cyclic voltammetry (CV) transforms from a near symmetry rectangular shape to x-axis symmetry with higher current density as the anodization time increases due to increased specific surface area of the nanotubular structure. The larger CV size at more cathodic regions is characteristics of the n-type behaviour of titania materials, as also shown in the Mott–Schottky analysis.</description><subject>Anodizing</subject><subject>Capacitance</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electrochemical capacitance</subject><subject>Exact sciences and technology</subject><subject>Formations</subject><subject>Nanostructure</subject><subject>Nanotubes</subject><subject>Nanotubes formation</subject><subject>Physics</subject><subject>Pits</subject><subject>Symmetry</subject><subject>Titania nanotubes</subject><subject>Titanium dioxide</subject><issn>0169-4332</issn><issn>1873-5584</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kE1r3DAQhkVpoNsk_6AHXwq9rDP6sq1LIISkDQRySU45iFl53GrxWhvJG2h_fWdxyDEgJDR6RsP7CPFNQi1BNhfbGvflUEKtQOoabC1l90msZNfqtbWd-SxWjLm10Vp9EV9L2QJIxa8r8Xw1VXF6pTLH3zjHNFW8hpR3ywWnvqKRwpxT-EO7GHCsAu4xxBmnQFUaGEl9_Ed9NR9rEauJK_NhQ-VMnAw4Fjp_O0_F0-3N4_Wv9f3Dz7vrq_t10I2beZdoe0BCFzT1zhrnYCOxRZCOzKbVYMGgAqtAB9cNroG2N9JY3ZAyjT4VP5Z_9zm9HDiK38USaBxxonQoXjZGKc7faUbNgoacSsk0-H2OO8x_vQR_dOm3fnHpjy49WM8uue372wQsrGDIHD6W917VWqsNGOYuF4447muk7EuIxKL6mFmi71P8eNB_PAKMbw</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Endut, Zulkarnain</creator><creator>Hamdi, Mohd</creator><creator>Basirun, Wan Jeffrey</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130901</creationdate><title>An investigation on formation and electrochemical capacitance of anodized titania nanotubes</title><author>Endut, Zulkarnain ; Hamdi, Mohd ; Basirun, Wan Jeffrey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-c31a5d0aea9c3ed954990b1a7a019e4b730504a205203c98f9607d414536e2463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Anodizing</topic><topic>Capacitance</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electrochemical capacitance</topic><topic>Exact sciences and technology</topic><topic>Formations</topic><topic>Nanostructure</topic><topic>Nanotubes</topic><topic>Nanotubes formation</topic><topic>Physics</topic><topic>Pits</topic><topic>Symmetry</topic><topic>Titania nanotubes</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Endut, Zulkarnain</creatorcontrib><creatorcontrib>Hamdi, Mohd</creatorcontrib><creatorcontrib>Basirun, Wan Jeffrey</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied surface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Endut, Zulkarnain</au><au>Hamdi, Mohd</au><au>Basirun, Wan Jeffrey</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An investigation on formation and electrochemical capacitance of anodized titania nanotubes</atitle><jtitle>Applied surface science</jtitle><date>2013-09-01</date><risdate>2013</risdate><volume>280</volume><spage>962</spage><epage>966</epage><pages>962-966</pages><issn>0169-4332</issn><eissn>1873-5584</eissn><abstract>•We study the titania nanotubes formation in fluoride containing electrolyte.•Nanoscale pits serves as pore integration centre that finally creating nanotube.•Titania nanotubes offer high specific surface area for charge storage activity.•Unsymmetrical CV shape is characteristic of n-type behavior of titania nanotubes.
The mechanism of titania nanotubes formation and growth during anodization of titanium in NH4F/ethylene glycol electrolyte at 45V applied voltage was investigated using field emission scanning electron microscopy (FESEM). The initial stage of the anodization occurs with the formation of a compact oxide layer with nanoscale pits. With the increase of anodization time, the pits transform to larger and deeper pores due to the integration of the smaller and larger pores, finally creating self-ordered titania nanotubes. The porous structure increases electrochemical capacitance from 18.3μFcm−2 for 10s anodization time to 49.9μFcm−2 for 1800s anodization time. The cyclic voltammetry (CV) transforms from a near symmetry rectangular shape to x-axis symmetry with higher current density as the anodization time increases due to increased specific surface area of the nanotubular structure. The larger CV size at more cathodic regions is characteristics of the n-type behaviour of titania materials, as also shown in the Mott–Schottky analysis.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.apsusc.2013.05.118</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0169-4332 |
ispartof | Applied surface science, 2013-09, Vol.280, p.962-966 |
issn | 0169-4332 1873-5584 |
language | eng |
recordid | cdi_proquest_miscellaneous_1642216983 |
source | ScienceDirect Journals |
subjects | Anodizing Capacitance Condensed matter: electronic structure, electrical, magnetic, and optical properties Condensed matter: structure, mechanical and thermal properties Cross-disciplinary physics: materials science rheology Electrochemical capacitance Exact sciences and technology Formations Nanostructure Nanotubes Nanotubes formation Physics Pits Symmetry Titania nanotubes Titanium dioxide |
title | An investigation on formation and electrochemical capacitance of anodized titania nanotubes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T20%3A17%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20investigation%20on%20formation%20and%20electrochemical%20capacitance%20of%20anodized%20titania%20nanotubes&rft.jtitle=Applied%20surface%20science&rft.au=Endut,%20Zulkarnain&rft.date=2013-09-01&rft.volume=280&rft.spage=962&rft.epage=966&rft.pages=962-966&rft.issn=0169-4332&rft.eissn=1873-5584&rft_id=info:doi/10.1016/j.apsusc.2013.05.118&rft_dat=%3Cproquest_cross%3E1642216983%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c369t-c31a5d0aea9c3ed954990b1a7a019e4b730504a205203c98f9607d414536e2463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1642216983&rft_id=info:pmid/&rfr_iscdi=true |