Loading…
A solid-phase PEGylation strategy for protein therapeutics using a potent FGF21 analog
Abstract Fibroblast growth factor 21 (FGF21) is an endocrine-acting hormone that has the potential to treat metabolic diseases, such as type 2 diabetes and obesity. Development of FGF21 into a therapeutic has been hindered due to its low intrinsic bio-stability, propensity towards aggregation and it...
Saved in:
Published in: | Biomaterials 2014-06, Vol.35 (19), p.5206-5215 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract Fibroblast growth factor 21 (FGF21) is an endocrine-acting hormone that has the potential to treat metabolic diseases, such as type 2 diabetes and obesity. Development of FGF21 into a therapeutic has been hindered due to its low intrinsic bio-stability, propensity towards aggregation and its susceptibility to in vivo proteolytic degradation. In order to address these shortcomings, we’ve developed recombinant human FGF21 variants by strategically introducing cysteine residues via site-directed mutagenesis, and have also developed a solid-phase nickel affinity PEGylation strategy, whereby engineered, surface-exposed cysteine residues of immobilized proteins were used as a platform to efficiently and site-selectively conjugate with PEG-maleimide. The engineered PEGylated FGF21 conjugates retained its biological functions, as well as demonstrated an increase in half-life by over 211.3 min. By demonstrating the biological activity of the FGF21 analog as a prototype, we have also provided a “generalized” solid-phase approach to effectively increase serum half-life of protein therapeutics. |
---|---|
ISSN: | 0142-9612 1878-5905 |
DOI: | 10.1016/j.biomaterials.2014.03.023 |