Loading…
Modelling turbulent skin-friction control using linearized Navier–Stokes equations
Linearized Navier–Stokes equations are solved to investigate the impact on the growth of near-wall turbulent streaks that arises from streamwise-travelling waves of spanwise wall velocity. The percentage change in streak amplification due to the travelling waves, over a range of wave parameters, is...
Saved in:
Published in: | Journal of fluid mechanics 2012-07, Vol.702, p.403-414 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c436t-2f159740b83394965a327ef5aa85e042597bd25275b88dae1dfe801d2b70b6c83 |
---|---|
cites | cdi_FETCH-LOGICAL-c436t-2f159740b83394965a327ef5aa85e042597bd25275b88dae1dfe801d2b70b6c83 |
container_end_page | 414 |
container_issue | |
container_start_page | 403 |
container_title | Journal of fluid mechanics |
container_volume | 702 |
creator | Duque-Daza, C. A. Baig, M. F. Lockerby, D. A. Chernyshenko, S. I. Davies, C. |
description | Linearized Navier–Stokes equations are solved to investigate the impact on the growth of near-wall turbulent streaks that arises from streamwise-travelling waves of spanwise wall velocity. The percentage change in streak amplification due to the travelling waves, over a range of wave parameters, is compared to published direct numerical simulation (DNS) predictions of turbulent skin-friction reduction; a clear correlation between the two is observed. Linearized simulations at a much higher Reynolds number, more relevant to aerospace applications, produce results that show no marked differences to those obtained at low Reynolds number. It is also observed that there is a close correlation between DNS data of drag reduction and a very simple characteristic of the ‘generalized’ Stokes layer generated by the streamwise-travelling waves. |
doi_str_mv | 10.1017/jfm.2012.189 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642259556</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2012_189</cupid><sourcerecordid>1642259556</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-2f159740b83394965a327ef5aa85e042597bd25275b88dae1dfe801d2b70b6c83</originalsourceid><addsrcrecordid>eNqFkc1KxDAYRYMoOI7ufICCCC5szX-apQz-wagLx3VJ23TITNvMJK2gK9_BN_RJTJlBRARXWeR8J7nfBeAYwQRBJC4WVZNgiHCCUrkDRohyGQtO2S4YQYhxjBCG--DA-wWEiEApRmB2b0td16adR13v8r7WbRf5pWnjypmiM7aNCtt2ztZR7wcqoFo586bL6EG9GO0-3z-eOrvUPtLrXg0T_hDsVar2-mh7jsHz9dVschtPH2_uJpfTuKCEdzGuEJOCwjwlRFLJmSJY6IoplTINKQ6XeYkZFixP01JpVFY6hajEuYA5L1IyBmcb78rZda99lzXGFyGOarXtfYY4xcHCGP8fJYxLwihDAT35hS5s79oQJENhi3z4rAjU-YYqnPXe6SpbOdMo9xqgbGgjC21kQxtZaCPgp1up8oWqK6fawvjvGcyhlIQOkZKtVjW5M-Vc_3z9D_EXdpyZmw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1022633947</pqid></control><display><type>article</type><title>Modelling turbulent skin-friction control using linearized Navier–Stokes equations</title><source>Cambridge University Press</source><creator>Duque-Daza, C. A. ; Baig, M. F. ; Lockerby, D. A. ; Chernyshenko, S. I. ; Davies, C.</creator><creatorcontrib>Duque-Daza, C. A. ; Baig, M. F. ; Lockerby, D. A. ; Chernyshenko, S. I. ; Davies, C.</creatorcontrib><description>Linearized Navier–Stokes equations are solved to investigate the impact on the growth of near-wall turbulent streaks that arises from streamwise-travelling waves of spanwise wall velocity. The percentage change in streak amplification due to the travelling waves, over a range of wave parameters, is compared to published direct numerical simulation (DNS) predictions of turbulent skin-friction reduction; a clear correlation between the two is observed. Linearized simulations at a much higher Reynolds number, more relevant to aerospace applications, produce results that show no marked differences to those obtained at low Reynolds number. It is also observed that there is a close correlation between DNS data of drag reduction and a very simple characteristic of the ‘generalized’ Stokes layer generated by the streamwise-travelling waves.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2012.189</identifier><identifier>CODEN: JFLSA7</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Computational fluid dynamics ; Correlation ; Exact sciences and technology ; Fluid dynamics ; Fluid flow ; Fluid mechanics ; Friction ; Fundamental areas of phenomenology (including applications) ; Mathematical models ; Navier-Stokes equations ; Physics ; Reynolds number ; Streak ; Turbulence ; Turbulence control ; Turbulent flow ; Turbulent flows, convection, and heat transfer</subject><ispartof>Journal of fluid mechanics, 2012-07, Vol.702, p.403-414</ispartof><rights>Copyright © Cambridge University Press 2012</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © Cambridge University Press 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-2f159740b83394965a327ef5aa85e042597bd25275b88dae1dfe801d2b70b6c83</citedby><cites>FETCH-LOGICAL-c436t-2f159740b83394965a327ef5aa85e042597bd25275b88dae1dfe801d2b70b6c83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112012001899/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,72832</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26099348$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Duque-Daza, C. A.</creatorcontrib><creatorcontrib>Baig, M. F.</creatorcontrib><creatorcontrib>Lockerby, D. A.</creatorcontrib><creatorcontrib>Chernyshenko, S. I.</creatorcontrib><creatorcontrib>Davies, C.</creatorcontrib><title>Modelling turbulent skin-friction control using linearized Navier–Stokes equations</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>Linearized Navier–Stokes equations are solved to investigate the impact on the growth of near-wall turbulent streaks that arises from streamwise-travelling waves of spanwise wall velocity. The percentage change in streak amplification due to the travelling waves, over a range of wave parameters, is compared to published direct numerical simulation (DNS) predictions of turbulent skin-friction reduction; a clear correlation between the two is observed. Linearized simulations at a much higher Reynolds number, more relevant to aerospace applications, produce results that show no marked differences to those obtained at low Reynolds number. It is also observed that there is a close correlation between DNS data of drag reduction and a very simple characteristic of the ‘generalized’ Stokes layer generated by the streamwise-travelling waves.</description><subject>Computational fluid dynamics</subject><subject>Correlation</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Friction</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mathematical models</subject><subject>Navier-Stokes equations</subject><subject>Physics</subject><subject>Reynolds number</subject><subject>Streak</subject><subject>Turbulence</subject><subject>Turbulence control</subject><subject>Turbulent flow</subject><subject>Turbulent flows, convection, and heat transfer</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkc1KxDAYRYMoOI7ufICCCC5szX-apQz-wagLx3VJ23TITNvMJK2gK9_BN_RJTJlBRARXWeR8J7nfBeAYwQRBJC4WVZNgiHCCUrkDRohyGQtO2S4YQYhxjBCG--DA-wWEiEApRmB2b0td16adR13v8r7WbRf5pWnjypmiM7aNCtt2ztZR7wcqoFo586bL6EG9GO0-3z-eOrvUPtLrXg0T_hDsVar2-mh7jsHz9dVschtPH2_uJpfTuKCEdzGuEJOCwjwlRFLJmSJY6IoplTINKQ6XeYkZFixP01JpVFY6hajEuYA5L1IyBmcb78rZda99lzXGFyGOarXtfYY4xcHCGP8fJYxLwihDAT35hS5s79oQJENhi3z4rAjU-YYqnPXe6SpbOdMo9xqgbGgjC21kQxtZaCPgp1up8oWqK6fawvjvGcyhlIQOkZKtVjW5M-Vc_3z9D_EXdpyZmw</recordid><startdate>20120710</startdate><enddate>20120710</enddate><creator>Duque-Daza, C. A.</creator><creator>Baig, M. F.</creator><creator>Lockerby, D. A.</creator><creator>Chernyshenko, S. I.</creator><creator>Davies, C.</creator><general>Cambridge University Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20120710</creationdate><title>Modelling turbulent skin-friction control using linearized Navier–Stokes equations</title><author>Duque-Daza, C. A. ; Baig, M. F. ; Lockerby, D. A. ; Chernyshenko, S. I. ; Davies, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-2f159740b83394965a327ef5aa85e042597bd25275b88dae1dfe801d2b70b6c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Computational fluid dynamics</topic><topic>Correlation</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Friction</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mathematical models</topic><topic>Navier-Stokes equations</topic><topic>Physics</topic><topic>Reynolds number</topic><topic>Streak</topic><topic>Turbulence</topic><topic>Turbulence control</topic><topic>Turbulent flow</topic><topic>Turbulent flows, convection, and heat transfer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duque-Daza, C. A.</creatorcontrib><creatorcontrib>Baig, M. F.</creatorcontrib><creatorcontrib>Lockerby, D. A.</creatorcontrib><creatorcontrib>Chernyshenko, S. I.</creatorcontrib><creatorcontrib>Davies, C.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duque-Daza, C. A.</au><au>Baig, M. F.</au><au>Lockerby, D. A.</au><au>Chernyshenko, S. I.</au><au>Davies, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling turbulent skin-friction control using linearized Navier–Stokes equations</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2012-07-10</date><risdate>2012</risdate><volume>702</volume><spage>403</spage><epage>414</epage><pages>403-414</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><coden>JFLSA7</coden><abstract>Linearized Navier–Stokes equations are solved to investigate the impact on the growth of near-wall turbulent streaks that arises from streamwise-travelling waves of spanwise wall velocity. The percentage change in streak amplification due to the travelling waves, over a range of wave parameters, is compared to published direct numerical simulation (DNS) predictions of turbulent skin-friction reduction; a clear correlation between the two is observed. Linearized simulations at a much higher Reynolds number, more relevant to aerospace applications, produce results that show no marked differences to those obtained at low Reynolds number. It is also observed that there is a close correlation between DNS data of drag reduction and a very simple characteristic of the ‘generalized’ Stokes layer generated by the streamwise-travelling waves.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2012.189</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2012-07, Vol.702, p.403-414 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_miscellaneous_1642259556 |
source | Cambridge University Press |
subjects | Computational fluid dynamics Correlation Exact sciences and technology Fluid dynamics Fluid flow Fluid mechanics Friction Fundamental areas of phenomenology (including applications) Mathematical models Navier-Stokes equations Physics Reynolds number Streak Turbulence Turbulence control Turbulent flow Turbulent flows, convection, and heat transfer |
title | Modelling turbulent skin-friction control using linearized Navier–Stokes equations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A40%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20turbulent%20skin-friction%20control%20using%20linearized%20Navier%E2%80%93Stokes%20equations&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Duque-Daza,%20C.%20A.&rft.date=2012-07-10&rft.volume=702&rft.spage=403&rft.epage=414&rft.pages=403-414&rft.issn=0022-1120&rft.eissn=1469-7645&rft.coden=JFLSA7&rft_id=info:doi/10.1017/jfm.2012.189&rft_dat=%3Cproquest_cross%3E1642259556%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c436t-2f159740b83394965a327ef5aa85e042597bd25275b88dae1dfe801d2b70b6c83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1022633947&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2012_189&rfr_iscdi=true |