Loading…

Modeling coupled unsaturated and saturated nitrate distribution of the aquifer Westliches Leibnitzer Feld, Austria

The aquifer Westliches Leibnitzer Feld, Austria, is a significant resource for regional and supraregional drinking water supply for more than 100,000 inhabitants, but the region also provides excellent agricultural conditions. This dual use implicates conflicts (e.g., non-point source groundwater po...

Full description

Saved in:
Bibliographic Details
Published in:Environmental earth sciences 2013-05, Vol.69 (2), p.663-678
Main Authors: Klammler, Gernot, Kupfersberger, Hans, Rock, Gerhard, Fank, Johann
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The aquifer Westliches Leibnitzer Feld, Austria, is a significant resource for regional and supraregional drinking water supply for more than 100,000 inhabitants, but the region also provides excellent agricultural conditions. This dual use implicates conflicts (e.g., non-point source groundwater pollution by nitrogen leaching), which have to be harmonized for a sustainable coexistence. At the aquifer scale, numerical models are state-of-the-art tools to simulate the behavior of groundwater quantity and quality and serve as decision support system for implementing groundwater protecting measures. While fully and iteratively coupled simulation models consider feedback between the saturated and unsaturated zone, sandy soil conditions and groundwater depths beneath the root zone allow the use of a unidirectional sequential coupling of the unsaturated water flow and nitrate transport model SIMWASER/STOTRASIM with FEFLOW for the investigation area. Considering separated inputs of water and nitrogen into groundwater out of surface water bodies, agricultural, residential and forested areas, first simulation results match observed groundwater tables, but underestimate nitrate concentrations in general. Thus, multiple scenarios assuming higher nitrogen inputs at the surface are simulated to converge with measured nitrate concentrations. Preliminary results indicate that N-input into the groundwater is strongly dominated by contributions of agricultural land.
ISSN:1866-6280
1866-6299
DOI:10.1007/s12665-013-2302-6