Loading…

Unsteady turbulent plume models

Four existing integral models of unsteady turbulent plumes are revisited. We demonstrate that none of these published models is ideal for general descriptions of unsteady behaviour and put forward a modified model. We show that the most recent (top-hat) plume model (Scase et al. J. Fluid Mech., vol....

Full description

Saved in:
Bibliographic Details
Published in:Journal of fluid mechanics 2012-04, Vol.697, p.455-480
Main Authors: Scase, M. M., Hewitt, R. E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c497t-f28b0e449205e6b0d781b32b2e045fdc5699bfb7b3ca6e2e73f02274a52586243
cites cdi_FETCH-LOGICAL-c497t-f28b0e449205e6b0d781b32b2e045fdc5699bfb7b3ca6e2e73f02274a52586243
container_end_page 480
container_issue
container_start_page 455
container_title Journal of fluid mechanics
container_volume 697
creator Scase, M. M.
Hewitt, R. E.
description Four existing integral models of unsteady turbulent plumes are revisited. We demonstrate that none of these published models is ideal for general descriptions of unsteady behaviour and put forward a modified model. We show that the most recent (top-hat) plume model (Scase et al. J. Fluid Mech., vol. 563, 2006, p. 443), and the earlier (Gaussian) plume models (Delichatsios J. Fluid Mech., vol. 93, 1979, p. 241; Yu Trans. ASME, vol. 112, 1990, p.186), are all ill-posed. This ill-posedness arises from the downstream growth of short-scale waves, which have an unbounded downstream growth rate. We show that both the top-hat and the Gaussian (Yu) models can be regularized, rendering them well-posed, by the inclusion of a velocity diffusion term. The effect of including this diffusive mechanism is to include a vertical structure in the model that can be interpreted as representing the vertical extent of an eddy. The effects of this additional mechanism are small for steady applications, and cases where the plume forcing can be considered to follow a power law (both of which have been studied extensively). However, the inclusion of diffusion is shown to be crucial to the general initial-value problem for unsteady models.
doi_str_mv 10.1017/jfm.2012.77
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642293364</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2012_77</cupid><sourcerecordid>1642293364</sourcerecordid><originalsourceid>FETCH-LOGICAL-c497t-f28b0e449205e6b0d781b32b2e045fdc5699bfb7b3ca6e2e73f02274a52586243</originalsourceid><addsrcrecordid>eNqNkE1LAzEQhoMoWKsnf4BFEATZOpnNZjZHKX5BwYs9L8luIlv2oya7h_57U1oUxIOnuTzzvDMvY5cc5hw43a9dO0fgOCc6YhMupEpIiuyYTQAQE84RTtlZCGsAnoKiCbtadWGwutrOhtGbsbHdMNs0Y2tnbV_ZJpyzE6ebYC8Oc8pWT4_vi5dk-fb8unhYJqVQNCQOcwNWCIWQWWmgopybFA1aEJmrykwqZZwhk5ZaWrSUungQCZ1hlksU6ZTd7r0b33-ONgxFW4fSNo3ubD-GgkuBqNJU_gMFLjgQKIjo9S903Y--i48USipOuZQ8Qnd7qPR9CN66YuPrVvttNO1kVMRai12tBVGkbw5KHUrdOK-7sg7fK5gR5ULJyCUHq26Nr6sP-5P9l_cLHR2DWQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>969178661</pqid></control><display><type>article</type><title>Unsteady turbulent plume models</title><source>Cambridge University Press</source><creator>Scase, M. M. ; Hewitt, R. E.</creator><creatorcontrib>Scase, M. M. ; Hewitt, R. E.</creatorcontrib><description>Four existing integral models of unsteady turbulent plumes are revisited. We demonstrate that none of these published models is ideal for general descriptions of unsteady behaviour and put forward a modified model. We show that the most recent (top-hat) plume model (Scase et al. J. Fluid Mech., vol. 563, 2006, p. 443), and the earlier (Gaussian) plume models (Delichatsios J. Fluid Mech., vol. 93, 1979, p. 241; Yu Trans. ASME, vol. 112, 1990, p.186), are all ill-posed. This ill-posedness arises from the downstream growth of short-scale waves, which have an unbounded downstream growth rate. We show that both the top-hat and the Gaussian (Yu) models can be regularized, rendering them well-posed, by the inclusion of a velocity diffusion term. The effect of including this diffusive mechanism is to include a vertical structure in the model that can be interpreted as representing the vertical extent of an eddy. The effects of this additional mechanism are small for steady applications, and cases where the plume forcing can be considered to follow a power law (both of which have been studied extensively). However, the inclusion of diffusion is shown to be crucial to the general initial-value problem for unsteady models.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2012.77</identifier><identifier>CODEN: JFLSA7</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Computational fluid dynamics ; Convection and heat transfer ; Diffusion ; Exact sciences and technology ; Fluid dynamics ; Fluid flow ; Fundamental areas of phenomenology (including applications) ; Inclusions ; Marine ; Physics ; Plumes ; Thermal energy ; Turbulence ; Turbulent flow ; Turbulent flows, convection, and heat transfer ; Unsteady</subject><ispartof>Journal of fluid mechanics, 2012-04, Vol.697, p.455-480</ispartof><rights>Copyright © Cambridge University Press 2012</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © Cambridge University Press 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c497t-f28b0e449205e6b0d781b32b2e045fdc5699bfb7b3ca6e2e73f02274a52586243</citedby><cites>FETCH-LOGICAL-c497t-f28b0e449205e6b0d781b32b2e045fdc5699bfb7b3ca6e2e73f02274a52586243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112012000778/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,72703</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25778496$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Scase, M. M.</creatorcontrib><creatorcontrib>Hewitt, R. E.</creatorcontrib><title>Unsteady turbulent plume models</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>Four existing integral models of unsteady turbulent plumes are revisited. We demonstrate that none of these published models is ideal for general descriptions of unsteady behaviour and put forward a modified model. We show that the most recent (top-hat) plume model (Scase et al. J. Fluid Mech., vol. 563, 2006, p. 443), and the earlier (Gaussian) plume models (Delichatsios J. Fluid Mech., vol. 93, 1979, p. 241; Yu Trans. ASME, vol. 112, 1990, p.186), are all ill-posed. This ill-posedness arises from the downstream growth of short-scale waves, which have an unbounded downstream growth rate. We show that both the top-hat and the Gaussian (Yu) models can be regularized, rendering them well-posed, by the inclusion of a velocity diffusion term. The effect of including this diffusive mechanism is to include a vertical structure in the model that can be interpreted as representing the vertical extent of an eddy. The effects of this additional mechanism are small for steady applications, and cases where the plume forcing can be considered to follow a power law (both of which have been studied extensively). However, the inclusion of diffusion is shown to be crucial to the general initial-value problem for unsteady models.</description><subject>Computational fluid dynamics</subject><subject>Convection and heat transfer</subject><subject>Diffusion</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Inclusions</subject><subject>Marine</subject><subject>Physics</subject><subject>Plumes</subject><subject>Thermal energy</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><subject>Turbulent flows, convection, and heat transfer</subject><subject>Unsteady</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNkE1LAzEQhoMoWKsnf4BFEATZOpnNZjZHKX5BwYs9L8luIlv2oya7h_57U1oUxIOnuTzzvDMvY5cc5hw43a9dO0fgOCc6YhMupEpIiuyYTQAQE84RTtlZCGsAnoKiCbtadWGwutrOhtGbsbHdMNs0Y2tnbV_ZJpyzE6ebYC8Oc8pWT4_vi5dk-fb8unhYJqVQNCQOcwNWCIWQWWmgopybFA1aEJmrykwqZZwhk5ZaWrSUungQCZ1hlksU6ZTd7r0b33-ONgxFW4fSNo3ubD-GgkuBqNJU_gMFLjgQKIjo9S903Y--i48USipOuZQ8Qnd7qPR9CN66YuPrVvttNO1kVMRai12tBVGkbw5KHUrdOK-7sg7fK5gR5ULJyCUHq26Nr6sP-5P9l_cLHR2DWQ</recordid><startdate>20120425</startdate><enddate>20120425</enddate><creator>Scase, M. M.</creator><creator>Hewitt, R. E.</creator><general>Cambridge University Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20120425</creationdate><title>Unsteady turbulent plume models</title><author>Scase, M. M. ; Hewitt, R. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c497t-f28b0e449205e6b0d781b32b2e045fdc5699bfb7b3ca6e2e73f02274a52586243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Computational fluid dynamics</topic><topic>Convection and heat transfer</topic><topic>Diffusion</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Inclusions</topic><topic>Marine</topic><topic>Physics</topic><topic>Plumes</topic><topic>Thermal energy</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><topic>Turbulent flows, convection, and heat transfer</topic><topic>Unsteady</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scase, M. M.</creatorcontrib><creatorcontrib>Hewitt, R. E.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scase, M. M.</au><au>Hewitt, R. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unsteady turbulent plume models</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2012-04-25</date><risdate>2012</risdate><volume>697</volume><spage>455</spage><epage>480</epage><pages>455-480</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><coden>JFLSA7</coden><abstract>Four existing integral models of unsteady turbulent plumes are revisited. We demonstrate that none of these published models is ideal for general descriptions of unsteady behaviour and put forward a modified model. We show that the most recent (top-hat) plume model (Scase et al. J. Fluid Mech., vol. 563, 2006, p. 443), and the earlier (Gaussian) plume models (Delichatsios J. Fluid Mech., vol. 93, 1979, p. 241; Yu Trans. ASME, vol. 112, 1990, p.186), are all ill-posed. This ill-posedness arises from the downstream growth of short-scale waves, which have an unbounded downstream growth rate. We show that both the top-hat and the Gaussian (Yu) models can be regularized, rendering them well-posed, by the inclusion of a velocity diffusion term. The effect of including this diffusive mechanism is to include a vertical structure in the model that can be interpreted as representing the vertical extent of an eddy. The effects of this additional mechanism are small for steady applications, and cases where the plume forcing can be considered to follow a power law (both of which have been studied extensively). However, the inclusion of diffusion is shown to be crucial to the general initial-value problem for unsteady models.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2012.77</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2012-04, Vol.697, p.455-480
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_miscellaneous_1642293364
source Cambridge University Press
subjects Computational fluid dynamics
Convection and heat transfer
Diffusion
Exact sciences and technology
Fluid dynamics
Fluid flow
Fundamental areas of phenomenology (including applications)
Inclusions
Marine
Physics
Plumes
Thermal energy
Turbulence
Turbulent flow
Turbulent flows, convection, and heat transfer
Unsteady
title Unsteady turbulent plume models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T03%3A04%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unsteady%20turbulent%20plume%20models&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Scase,%20M.%20M.&rft.date=2012-04-25&rft.volume=697&rft.spage=455&rft.epage=480&rft.pages=455-480&rft.issn=0022-1120&rft.eissn=1469-7645&rft.coden=JFLSA7&rft_id=info:doi/10.1017/jfm.2012.77&rft_dat=%3Cproquest_cross%3E1642293364%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c497t-f28b0e449205e6b0d781b32b2e045fdc5699bfb7b3ca6e2e73f02274a52586243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=969178661&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2012_77&rfr_iscdi=true