Loading…

Vortex formation and vortex breakup in a laminar separation bubble

The convective primary amplification of a forced two-dimensional perturbation initiates the formation of essentially two-dimensional large-scale vortices in a laminar separation bubble. These vortices are then shed from the bubble with the forcing frequency. Immediately downstream of their formation...

Full description

Saved in:
Bibliographic Details
Published in:Journal of fluid mechanics 2013-08, Vol.728, p.58-90
Main Authors: Marxen, Olaf, Lang, Matthias, Rist, Ulrich
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The convective primary amplification of a forced two-dimensional perturbation initiates the formation of essentially two-dimensional large-scale vortices in a laminar separation bubble. These vortices are then shed from the bubble with the forcing frequency. Immediately downstream of their formation, the vortices get distorted in the spanwise direction and quickly disintegrate into small-scale turbulence. The laminar–turbulent transition in a forced laminar separation bubble is dominated by this vortex formation and breakup process. Using numerical and experimental data, we give an in-depth characterization of this process in physical space as well as in Fourier space, exploiting the largely periodic character of the flow in time as well as in the spanwise direction. We present evidence that a combination of more than one secondary instability mechanism is active during this process. The first instability mechanism is the elliptic instability of vortex cores, leading to a spanwise deformation of the cores with a spanwise wavelength of the order of the size of the vortex. Another mechanism, potentially an instability of flow in between two consecutive vortices, is responsible for three-dimensionality in the braid region. The corresponding disturbances possess a much smaller spanwise wavelength as compared to those amplified through elliptic instability. The secondary instability mechanisms occur for both fundamental and subharmonic frequency, respectively, even in the absence of continuous forcing, indicative of temporal amplification in the region of vortex formation.
ISSN:0022-1120
1469-7645
DOI:10.1017/jfm.2013.222