Loading…

Mice lacking serum paraoxonase are susceptible to organophosphate toxicity and atherosclerosis

Serum paraoxonase (PON1) is an esterase that is associated with high-density lipoproteins (HDLs) in the plasma; it is involved in the detoxification of organophosphate insecticides such as parathion and chlorpyrifos. PON1 may also confer protection against coronary artery disease by destroying pro-i...

Full description

Saved in:
Bibliographic Details
Published in:Nature (London) 1998-07, Vol.394 (6690), p.284-287
Main Authors: Lusis, Aldons J, Shih, Diana M, Gu, Lingjie, Xia, Yu-Rong, Navab, Mohamad, Li, Wan-Fen, Hama, Susan, Castellani, Lawrence W, Furlong, Clement E, Costa, Lucio G, Fogelman, Alan M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Serum paraoxonase (PON1) is an esterase that is associated with high-density lipoproteins (HDLs) in the plasma; it is involved in the detoxification of organophosphate insecticides such as parathion and chlorpyrifos. PON1 may also confer protection against coronary artery disease by destroying pro-inflammatory oxidized lipids present in oxidized low-density lipoproteins (LDLs). To study the role of PON1 in vivo, we created PON1 -knockout mice by gene targeting. Compared with their wild-type littermates, PON1-deficient mice were extremely sensitive to the toxic effects of chlorpyrifos oxon, the activated form of chlorpyrifos, and were more sensitive to chlorpyrifos itself. HDLs isolated from PON1-deficient mice were unable to prevent LDL oxidation in a co-cultured cell model of the artery wall, and both HDLs and LDLs isolated from PON1 -knockout mice were more susceptible to oxidation by co-cultured cells than the lipoproteins from wild-type littermates. When fed on a high-fat, high-cholesterol diet, PON1 -null mice were more susceptible to atherosclerosis than their wild-type littermates.
ISSN:0028-0836
1476-4687
DOI:10.1038/28406