Loading…

Funnels, gas exchange and cliff jumping: natural history of the cliff dwelling ant Malagidris sofina

The Malagasy endemic ant Malagidris sofina (Bolton and Fisher 2014) nests on cliff faces in natural rock alcoves or clay banks. Colonies have single ergatoid queens and reproduce by fission. Each nest has a funnel-shaped entrance that projects horizontally from the cliff face. We examine three hypot...

Full description

Saved in:
Bibliographic Details
Published in:Insectes sociaux 2014, Vol.61 (4), p.357-365
Main Authors: Helms, J. A., IV, Peeters, C, Fisher, B. L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Malagasy endemic ant Malagidris sofina (Bolton and Fisher 2014) nests on cliff faces in natural rock alcoves or clay banks. Colonies have single ergatoid queens and reproduce by fission. Each nest has a funnel-shaped entrance that projects horizontally from the cliff face. We examine three hypotheses for the function of the funnels—water exclusion, gas exchange and defense. Entrance funnels are relatively impermeable and divert water from nests, but simple tubes would achieve the same result. Consistent with the gas exchange hypothesis, projected funnel entrances likely increase gas exchange rates over sixfold compared to simple tubes and may increase air flow within the nest. Gas exchange may explain the recurrent evolution of funnel entrances in several ant lineages, especially among cliff dwelling species. We outline M. sofina defense responses to conspecifics and co-occurring ant species, and find no support for a defense role of entrance funnels. Workers display little aggression but respond to several species with an original form of nest defense––cliff jumping—in which workers drop off the cliff face while clinging to invaders and then return to their nest. M. sofina is a restricted range species under threat of extinction by habitat destruction. Its novel lifestyle underscores the urgency of exploration and conservation in a tropical biodiversity hotspot.
ISSN:0020-1812
1420-9098
DOI:10.1007/s00040-014-0360-8